
comment-installer-tig-stack-telegraf-influxdb-et-grafana-sur-rocky-
linux-8
The	TIG	(Telegraf,	InfluxDB	and	Grafana)	Stack	is	an	acronym	for	a	platform	of	open-source	tools	to	make	the	
collection,	storage,	graphing	and	alerting	of	system	metrics	easier.	You	can	monitor	and	visualize	metrics	such	as	
memory,	disk	space,	logged-in	users,	system	load,	swap	usage,	uptime,	running	processes	etc.	from	one	place.	The	tools	
used	in	the	stack	are	as	follows:

Telegraf	-	is	an	open-source	metrics	collection	agent	for	collecting	and	sending	data	and	events	from	databases,
systems	and	IoT	sensors.	It	supports	various	output	plugins	such	as	InfluxDB,	Graphite,	Kafka,	etc	to	which	it	can
send	the	collected	data.
InfluxDB	-	is	an	open-source	time-series	database	written	in	the	Go	language.	It	is	optimized	for	fast,	high-
availability	storage	and	is	suitable	for	anything	involving	large	amounts	of	time-stamped	data,	including	metrics,
events	and	real-time	analytics.
Grafana	-	is	an	open-source	data	visualization	and	monitoring	suite.	It	supports	various	input	plugins	such	as
Graphite,	ElasticSearch,	InfluxDB,	etc.	It	provides	a	beautiful	dashboard	and	metric	analytics,	allowing	you	to
visualize	and	monitor	any	kind	of	system	metrics	and	performance	data.

In	this	tutorial,	you	will	learn	how	to	install	and	configure	the	TIG	Stack	on	a	single	Rocky	Linux	8	based	server.

Prerequisites
1. A	server	running	Rocky	Linux	8.

2. A	non-sudo	user	with	root	privileges.

3. SELinux	Disabled.

4. Ensure	that	everything	is	updated.

$	sudo	dnf	update

Step	1	-	Configure	Firewall
The	first	step	is	to	configure	the	firewall.	Rocky	Linux	comes	with	the	Firewalld	firewall.

Check	if	the	firewall	is	running.

$	sudo	firewall-cmd	--state

You	should	get	the	following	output.

running

Check	the	current	allowed	services/ports.

$	sudo	firewall-cmd	--permanent	--list-services

It	should	show	the	following	output.

cockpit	dhcpv6-client	ssh

Allow	8086	port	to	run	InfluxDB	and	3000	port	to	run	Grafana	Server.

$	sudo	firewall-cmd	--permanent	--add-port=8086/tcp
$	sudo	firewall-cmd	--permanent	--add-port=3000/tcp

Reload	the	firewall.

$	sudo	systemctl	reload	firewalld

Step	2	-	Install	InfluxDB
To	install	InfluxDB,	first,	you	need	to	create	a	repo	file	for	it.

Create	and	open	the	influxdb.repo	file	for	editing.

$	sudo	nano	/etc/yum.repos.d/influxdb.repo

Paste	the	following	code	in	it.

[influxdb]
name	=	InfluxDB	Repository	-	RHEL	$releasever
baseurl	=	https://repos.influxdata.com/rhel/$releasever/$basearch/stable

enabled	=	1
gpgcheck	=	1
gpgkey	=	https://repos.influxdata.com/influxdb.key

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

You	have	the	option	of	installing	InfluxDB	1.8.x	or	2.0.x.	However,	it	is	better	to	use	the	latest	version.	Install	InfluxDB.

$	sudo	dnf	install	influxdb2

Start	and	Enable	the	InfluxDB	service.

$	sudo	systemctl	enable	influxdb
$	sudo	systemctl	start	influxdb

Step	3	-	Create	InfluxDB	Database	and	User	Credentials
To	store	the	data	from	Telegraf,	you	need	to	set	up	the	Influx	database	and	user.

InfluxDB	comes	with	a	command-line	tool	named	influx	for	interacting	with	the	InfluxDB	server.	Think	of	influx	as	the
mysql	command-line	tool.

Run	the	following	command	to	perform	the	initial	configuration	for	Influx.

$	influx	setup
> Welcome	to	InfluxDB	2.0!
?	Please	type	your	primary	username	navjot
?	Please	type	your	password	***************
?	Please	type	your	password	again	***************
?	Please	type	your	primary	organization	name	mickaelangel
?	Please	type	your	primary	bucket	name	tigstack
?	Please	type	your	retention	period	in	hours,	or	0	for	infinite	
360	?	Setup	with	these	parameters?
	Username:	 	navjot
	Organization:	 	mickaelangel
	Bucket:	 	tigstack
		Retention	Period:		360h0m0s
	Yes
> Config	default	has	been	stored	in	/home/username/.influxdbv2/configs.

	BucketUser				
Organization	navjot		
mickaelangel	

	tigstack

You	need	to	set	up	your	initial	username,	password,	organization	name,	the	primary	bucket	name	to	store	data	and
retention	period	in	hours	for	that	data.

You	can	also	perform	this	setup	by	launching	the	URL	http://<serverIP>:8086/	in	your	browser.	Once	you	have	performed
the	initial	setup,	you	can	log	in	to	the	URL.

You	should	be	greeted	with	the	following	dashboard.

The	initial	setup	process	creates	a	default	token	that	has	full	read	and	write	access	to	all	the	organizations	in	the
database.	You	need	a	new	token	for	security	purposes	which	will	only	connect	to	the	organization	and	bucket	we	want
to	connect	to.

To	create	a	new	token,	click	on	the	Data	option	from	the	left	sidebar.	Next,	click	on	the	Tokens	section.

Here,	you	will	see	the	default	token	that	we	created	at	the	time	of	the	initial	configuration.	Click	on	the	Generate
Token	button	and	select	the	Read/Write	Token	option	to	launch	a	new	overlay	popup.

Give	a	name	to	the	Token	and	select	the	default	bucket	we	created	under	both	Read	and	Write	sections.

Click	Save	to	finish	creating	the	token.	Click	on	the	name	of	the	newly	created	token	to	reveal	a	popup	with	the	token
value.	Save	it	for	now	since	we	will	need	it	later	on.

This	completes	the	installation	and	configuration	of	InfluxDB.	Next,	we	need	to	install	Telegraf.

Step	4	-	Install	Telegraf
Telegraf	and	InfluxDB	share	the	same	repository.	It	means	you	can	install	Telegraf	directly.

$	sudo	dnf	install	telegraf

Enable	and	Start	the	Telegraf	service.

$	sudo	systemctl	enable	telegraf
$	sudo	systemctl	start	telegraf

Telegraf	is	a	plugin-driven	agent	and	has	4	types	of	plugins:

1. Input	plugins	collect	metrics.
2. Processor	plugins	transform,	decorate,	and	filter	metrics.
3. Aggregator	plugins	create	and	aggregate	metrics.
4. Output	plugins	define	the	destinations	where	metrics	are	sent	including	InfluxDB.

Telegraf	stores	its	configuration	for	all	these	plugins	in	the	file	/etc/telegraf/telegraf.conf.	The	first	step	is	to	connect
Telegraf	to	InfluxDB	by	enabling	the	influxdb_v2	output	plugin.	Open	the	file	/etc/telegraf/telegraf.conf	for	editing.

$	sudo	nano	/etc/telegraf/telegraf.conf

Find	the	line	[[outputs.influxdb_v2]]	and	uncomment	out	by	removing	the	#	in	front	of	it.	Edit	out	the	code	below	it	in
the	following	way.

[[outputs.influxdb_v2]]
	urls	=	["http://localhost:8086"]	
	token	=	"$INFLUX_TOKEN"		
organization	=	"mickaelangel"		bucket	
=	"tigstack"

Paste	the	InfluxDB	token	value	saved	earlier	in	place	of	the	$INFLUX_TOKEN	variable	in	the	code	above.

Search	for	the	line	INPUT	PLUGINS	and	you	will	see	the	following	input	plugins	enabled	by	default.

#	Read	metrics	about	cpu	usage
[[inputs.cpu]]
	##	Whether	to	report	per-cpu	stats	or	not
	percpu	=	true
	##	Whether	to	report	total	system	cpu	stats	or	not
	totalcpu	=	true
	##	If	true,	collect	raw	CPU	time	metrics
	collect_cpu_time	=	false
	##	If	true,	compute	and	report	the	sum	of	all	non-idle	CPU	states
	report_active	=	false

#	Read	metrics	about	disk	usage	by	mount	point
[[inputs.disk]]
	##	By	default	stats	will	be	gathered	for	all	mount	points.
	##	Set	mount_points	will	restrict	the	stats	to	only	the	specified	mount	points.
	#	mount_points	=	["/"]

	##	Ignore	mount	points	by	filesystem	type.
	ignore_fs	=	["tmpfs",	"devtmpfs",	"devfs",	"iso9660",	"overlay",	"aufs",	"squashfs"]

[[inputs.diskio]]
....
....

#	Get	kernel	statistics	from	/proc/stat
[[inputs.kernel]]
	#	no	configuration

#	Read	metrics	about	memory	usage
[[inputs.mem]]
	#	no	configuration

#	Get	the	number	of	processes	and	group	them	by	status
[[inputs.processes]]
	#	no	configuration

#	Read	metrics	about	swap	memory	usage
[[inputs.swap]]
	#	no	configuration

#	Read	metrics	about	system	load	&	uptime
[[inputs.system]]

	##	Uncomment	to	remove	deprecated	metrics.

You	can	configure	additional	input	plugins	depending	upon	your	requirement,	including	Apache	Server,	Docker
containers,	Elasticsearch,	iptables	firewall,	Kubernetes,	Memcached,	MongoDB,	MySQL,	Nginx,	PHP-fpm,	Postfix,
RabbitMQ,	Redis,	Varnish,	Wireguard,	PostgreSQL,	etc.

Once	you	are	finished,	save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Restart	the	Telegraf	service	once	you	have	finished	applying	the	changes.

$	sudo	systemctl	restart	telegraf

Step	5	-	Verify	if	Telegraf	stats	are	being	stored	in	InfluxDB
Before	proceeding	further,	you	need	to	verify	if	Telegraf	stats	are	correctly	collected	and	fed	into	the	InfluxDB.	Open
the	InfluxDB	UI	in	your	browser	and	visit	the	Data	>>	Buckets	>>	tigstack.	You	should	be	greeted	with	the	following
page.

Click	on	the	bucket	name	and	then	click	on	one	of	the	values	in	the	_measurement	filter,	and	keep	clicking	on	other	values
as	and	when	they	appear.	Once	you	are	done,	click	the	Submit	button.	You	should	see	a	graph	at	the	top.

This	should	confirm	that	the	data	is	being	passed	on	correctly.

Step	6	-	Install	Grafana

Create	and	open	the	file	/etc/yum.repos.d/grafana.repo	for	editing.

$	sudo	nano	/etc/yum.repos.d/grafana.repo

Paste	the	following	code	in	it.

[grafana]
name=grafana
baseurl=https://packages.grafana.com/oss/rpm
repo_gpgcheck=1
enabled=1
gpgcheck=1
gpgkey=https://packages.grafana.com/gpg.key
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Install	Grafana.

$	sudo	dnf	install	grafana

Start	and	Enable	the	Grafana	service.

$	sudo	systemctl	start	grafana-server
$	sudo	systemctl	enable	grafana-server

Step	7	-	Set	up	Grafana	Data	Source
Launch	the	URL	http://<serverIP>:3000	in	your	browser	and	the	following	Grafana	login	page	should	greet	you.

Login	with	the	default	username	admin	and	password	admin.	Next,	you	need	to	set	up	a	new	default	password.

You	shall	be	greeted	with	the	following	Grafana	homepage.	Click	on	the	Add	your	first	data	source	button.

Click	the	InfluxDB	button.

On	the	next	page,	select	Flux	from	the	dropdown	menu	as	the	query	language.	You	can	use	InfluxQL	as	the	query
language,	but	it	is	more	complicated	to	configure	since	it	supports	only	InfluxDB	v1.x	by	default.	Flux	supports	InfluxDB
v2.x	and	is	easier	to	set	up	and	configure.

Enter	the	following	values.

URL:	http://localhost:8086	Access:	Server	Basic	Auth	Details	User:	navjot	Password:	

InfluxDB	Details	Organization:	mickaelangel	Token:	Default	Bucket:	tigstack

Click	on	the	Save	and	test	button	and	you	should	see	a	confirmation	message	verifying	the	setup	is	successful.

Step	8	-	Set	up	Grafana	Dashboards
The	next	step	is	to	set	up	Grafana	Dashboards.	Click	on	the	+	sign	and	select	Dashboards	to	open	the	Dashboard
Create	screen.

On	the	next	page,	click	on	the	Add	an	empty	panel	button	to	launch	the	following	screen.

Paste	the	following	code	in	the	Query	Editor.	This

from(bucket:	"NAMEOFYOUBUCKET")
		|>	range(start:	v.timeRangeStart,	stop:	v.timeRangeStop)
		|>	filter(fn:	(r)	=>	r["_measurement"]	==	"cpu")
		|>	filter(fn:	(r)	=>	r["_field"]	==	"usage_idle")
		|>	filter(fn:	(r)	=>	r["cpu"]	==	"cpu-total")
		|>	filter(fn:	(r)	=>	r["host"]	==	"NAMEOFYOURHOST")
		|>	aggregateWindow(every:	v.windowPeriod,	fn:	mean,	createEmpty:	false)
		|>	map(fn:	(r)	=>	({	r	with	_value:	r._value	*	-1.0	+	100.0	}))
		|>	toFloat()
		|>	yield(name:	"mean")

Use	the	bucket	name	which	we	used	above.	And	the	name	of	the	host	which	you	can	retrieve	from	the	file	/etc/hostname.

The	above	code	will	calculate	the	CPU	Usage	and	generate	a	graph	for	it.	Give	the	Panel	a	Title.	Click	the	Query
inspector	button	to	verify	if	your	query	is	working	successfully.	Once	you	are	satisfied	with	the	result,	click	on	the
Apply	button	to	proceed.

You	can	also	name	the	axis	by	using	the	Label	field	on	the	right	under	the	Axis	section.

Click	the	Apply	button	to	save	the	panel.

Click	the	Save	Dashboard	button,	once	finished.

Give	a	name	to	the	dashboard	and	click	Save	to	finish.

It	will	open	the	dashboard	and	then	click	on	the	Add	Panel	button	to	create	another	panel.

Repeat	the	process	by	creating	another	panel	for	RAM	Usage.

from(bucket:	"NAMEOFYOUBUCKET")
	|>	range(start:	v.timeRangeStart,	stop:	v.timeRangeStop)
	|>	filter(fn:	(r)	=>	r["_measurement"]	==	"mem")
	|>	filter(fn:	(r)	=>	r["_field"]	==	"used_percent")
	|>	filter(fn:	(r)	=>	r["host"]	==	"NAMEOFYOURHOST")
	|>	aggregateWindow(every:	v.windowPeriod,	fn:	mean,	createEmpty:	false)
	|>	yield(name:	"mean")

And	use	the	following	code	for	displaying	the	HDD	Usage.

from(bucket:	"NAMEOFYOURBUCKET")
	|>	range(start:	v.timeRangeStart,	stop:	v.timeRangeStop)
	|>	filter(fn:	(r)	=>	r["_measurement"]	==	"disk")
	|>	filter(fn:	(r)	=>	r["_field"]	==	"used")
	|>	filter(fn:	(r)	=>	r["path"]	==	"/")
	|>	filter(fn:	(r)	=>	r["host"]	==	"NAMEOFYOURHOST")
	|>	aggregateWindow(every:	v.windowPeriod,	fn:	mean,	createEmpty:	false)
	|>	map(fn:	(r)	=>	({	r	with	_value:	r._value	/	1000000.0	}))
	|>	toFloat()		
	|>	yield(name:	"mean")

You	can	create	an	unlimited	number	of	panels.

The	above	code	is	based	on	the	Flux	Scripting	language.	Fortunately,	you	don't	need	to	learn	the	language	to	write
queries.	You	can	generate	the	query	from	the	InfluxDB	URL.	'Even	though	learning	the	language	can	benefit	in
optimizing	the	queries.

You	need	to	go	back	to	the	InfluxDB	dashboard	and	open	the	Explore	page	to	get	the	query.

Click	on	the	bucket	name	and	then	click	on	one	of	the	values	in	the	_measurement	filter,	and	keep	clicking	on	other	values
as	and	when	they	appear.	Once	you	are	done,	click	the	Script	Editor	button	and	you	should	see	the	following	page.
The	graph	should	also	be	updated.

Copy	the	query	shown	and	you	can	now	use	it	in	the	Grafana	dashboard	to	build	your	graphs.

Step	9	-	Configure	Alerts	and	Notifications
The	primary	use	of	setting	up	monitors	is	to	get	alerts	on	time	when	the	value	goes	beyond	a	certain	threshold.

The	first	step	is	to	set	the	destination	where	you	want	to	get	alerts.	You	can	receive	notifications	via	Email,	Slack,	
Kafka,	Google	Hangouts	Chat,	Microsoft	Teams,	Telegram	etc.

We	will	be	enabling	email	notifications	for	our	tutorial.	To	set	up	Email	notifications,	we	need	to	configure	the	SMTP	
service	first.	Open	the	/etc/grafana/grafana.ini	file	for	configuring	SMTP.

$	sudo	nano	/etc/grafana/grafana.ini

Find	the	following	line	[smtp]	in	it.	Uncomment	the	following	lines	and	enter	the	values	for	the	custom	SMTP	server.

[smtp]
enabled	=	true
host	=	email-smtp.us-west-2.amazonaws.com:587
user	=	YOURUSERNAME
#	If	the	password	contains	#	or	;	you	have	to	wrap	it	with	triple	quotes.	Ex	"""#password;"""
password	=	YOURUSERPASSWORD
;cert_file	=
;key_file	=
;skip_verify	=	false
from_address	=	user@example.com
from_name	=	mickaelangel	Grafana
#	EHLO	identity	in	SMTP	dialog	(defaults	to	instance_name)
;ehlo_identity	=	dashboard.example.com
#	SMTP	startTLS	policy	(defaults	to	'OpportunisticStartTLS')
;startTLS_policy	=	NoStartTLS

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Restart	the	Grafana	server	to	apply	the	settings.

$	sudo	systemctl	restart	grafana-server

Open	the	Grafana	page	and	click	on	the	Alert	icon	and	click	on	Notification	channels.

Click	on	the	Add	Channel	button.

Enter	the	details	to	set	up	the	Email	notification	channel.

Click	Test	to	see	if	the	email	settings	are	working.	Click	Save	when	finished.

Now	that	we	have	set	up	notification	channels,	we	need	to	set	up	alerts	on	when	to	receive	these	emails.	To	set	up	the
alerts,	you	need	to	go	back	to	the	dashboard	panels.

Click	on	Dashboard	>>	Manage	to	open	the	Dashboard	page.

Click	on	the	dashboard	we	just	created	and	you	will	get	its	homepage	with	different	panels.	To	edit	the	panel,	click	on
the	name	of	the	panel	and	a	dropdown	menu	will	popup.	Click	on	the	Edit	link	to	proceed.

Click	on	the	Alert	Panel	and	click	on	the	Create	Alert	button	to	set	up	a	new	alert.

You	can	now	configure	the	conditions	under	which	Grafana	will	send	the	alert.

Rule

Name	-	Enter	a	descriptive	name	for	the	alert
Evaluate	every	-	Specify	how	often	Grafana	should	evaluate	the	alert.	It	is	also	called	an	evaluation	interval.	You
can	set	any	value	you	desire	here.
For	-	Specify	how	long	the	query	needs	to	violate	the	threshold	before	the	alert	is	triggered.	Change	the	time
according	to	your	needs.

Conditions

Grafana	works	on	a	query	of	the	following	format	to	determine	when	to	launch	an	alert.

avg()	OF	query(A,	15m,	now)	IS	BELOW	14

avg()	controls	how	the	value	for	each	series	should	be	reduced	to	a	comparable	value	against	the	threshold.	You
can	click	on	the	function	name	to	select	a	different	function	such	as	avg(),	min(),	max(),	sum(),	count(),	etc.

query(A,	15m,	now)	The	letter	in	the	bracket	defines	what	query	to	execute	from	the	Metrics	tab.	The	next	two
parameters	define	the	time	range.	15m,	now	means	from	15	minutes	ago	to	now.

IS	BELOW	14	Defines	the	type	of	threshold	and	the	threshold	value.	You	can	click	on	IS	BELOW	to	select	a
different	threshold	type.

You	can	add	a	second	condition	below	it	by	clicking	on	the	+	button	beneath	the	first	condition.	Currently,	you	can	only
use	AND	and	OR	operators	between	multiple	conditions.

No	Data	&	Error	Handling

You	can	configure	how	Grafana	should	handle	queries	that	return	no	data	or	only	null	values	using	the	following
conditions:

1. No	Data	-	Set	the	rule	state	to	NoData
2. Alerting	-	Set	the	rule	state	to	Alerting
3. Keep	Last	State	-	Keep	the	current	rule	state,	whatever	it	is
4. Ok	-	Set	the	alert	rule	state	to	Ok,	as	in	you	will	get	an	alert	even	if	things	are	okay.

You	can	tell	Grafana	how	to	handle	execution	or	timeout	errors.

1. Alerting	-	Set	the	rule	state	to	Alerting
2. Keep	Last	State	-	Keep	the	current	rule	state,	whatever	it	is

Notifications

You	can	specify	alert	rule	notifications	along	with	a	detailed	message	about	the	rule.	You	can	add	anything	in	your
message	or	information	you	want	to	include	related	to	the	alert.

1. Send	to	-	Select	the	notification	channel	to	which	we	configured	earlier	to	send	the	alerts.
2. Message	-	Enter	a	text	message	to	send	along	with	your	alert.
3. Tags	-	Specify	a	list	of	tags	(key/value)	to	be	included	in	the	notification.	They	are	not	supported	by	all	notification

channels	(including	Email),	so	you	can	leave	them	empty.	They	are	usually	used	to	send	variables	and	their	values
in	the	mail.

Once	you	are	finished,	click	the	button	Test	rule	to	see	if	everything	is	working	fine.	Click	the	Apply	button	on	the	top
right	to	finish	adding	the	alert.

You	should	now	start	getting	alerts	on	your	email.

Conclusion
This	concludes	the	tutorial	about	installing	and	configuring	the	TIG	Stack	on	a	Rocky	Linux	8	Based	server.	If	you	have
any	questions,	post	them	in	the	comments	below.

