
comment-installer-openemr-sur-debian-12
OpenEMR	is	an	open-source	electronic	health	record	and	medical	practice	management	tool.	It	is	Office	of	the	National	Coordinator	for	Health	Information	Technology	(ONC)	certified	and	it	
features	integrated	health	records,	practice	management,	scheduling,	electronic	billing,	internationalization,	free	support,	and	a	lot	more.	It	can	track	patient	demographics,	schedule	patients,	
maintain	extremely	detailed	health	records	with	lab	reports,	medications,	and	procedures,	track	their	prescriptions,	help	with	medical	billing,	generate	detailed	reports,	and	multi-language	
support.

In	this	tutorial,	you	will	learn	how	to	install	OpenEMR	software	on	a	server	running	Debian	12.

Prerequisites
A	server	running	Debian	12.

A	non-root	sudo	user.

A	fully	qualified	domain	name	(FQDN)	like	openemr.example.com.

Make	sure	everything	is	updated.

$	sudo	apt	update
$	sudo	apt	upgrade

Few	packages	that	your	system	needs.

$	sudo	apt	install	wget	curl	nano	ufw	software-properties-common	dirmngr	apt-transport-https	gnupg2	ca-certificates	lsb-release	debian-archive-keyring	unzip	-y

Some	of	these	packages	may	already	be	installed	on	your	system.

Step	1	-	Configure	Firewall
The	first	step	is	to	configure	the	firewall.	Debian	comes	with	ufw	(Uncomplicated	Firewall)	by	default.

Check	if	the	firewall	is	running.

$	sudo	ufw	status

You	will	get	the	following	output.

Status:	inactive

Allow	SSH	port	so	that	the	firewall	doesn't	break	the	current	connection	upon	enabling	it.

$	sudo	ufw	allow	OpenSSH

Allow	HTTP	and	HTTPS	ports	as	well.

$	sudo	ufw	allow	http
$	sudo	ufw	allow	https

Enable	the	Firewall

$	sudo	ufw	enable
Command	may	disrupt	existing	ssh	connections.	Proceed	with	operation	(y|n)?	y
Firewall	is	active	and	enabled	on	system	startup

Check	the	status	of	the	firewall	again.

$	sudo	ufw	status

You	should	see	a	similar	output.

Status:	active

To		 		Action		 		From
--		 		------		 		----
OpenSSH		 		ALLOW		 		Anywhere
80/tcp		 		ALLOW		 		Anywhere
443		 		ALLOW		 		Anywhere
OpenSSH	(v6)		 		ALLOW		 		Anywhere	(v6)
80/tcp	(v6)		 		ALLOW		 		Anywhere	(v6)
443	(v6)		 		ALLOW		 		Anywhere	(v6)

Step	2	-	Install	Nginx
Debian	12	ships	with	an	older	version	of	Nginx.	To	install	the	latest	version,	you	need	to	download	the	official	Nginx	repository.

Import	Nginx's	signing	key.

$	curl	https://nginx.org/keys/nginx_signing.key	|	gpg	--dearmor	\
		|	sudo	tee	/usr/share/keyrings/nginx-archive-keyring.gpg	>/dev/null

Add	the	repository	for	Nginx's	stable	version.

$	echo	"deb	[signed-by=/usr/share/keyrings/nginx-archive-keyring.gpg]	\
http://nginx.org/packages/debian	`lsb_release	-cs`	nginx"	\
		|	sudo	tee	/etc/apt/sources.list.d/nginx.list

Update	the	system	repositories.

$	sudo	apt	update

Install	Nginx.

$	sudo	apt	install	nginx

Verify	the	installation.	On	Debian	systems,	the	following	command	will	only	work	with	sudo.

$	sudo	nginx	-v
nginx	version:	nginx/1.24.0

Start	the	Nginx	server.

$	sudo	systemctl	start	nginx

Check	the	service	status.

?	nginx.service	-	nginx	-	high	performance	web	server
		Loaded:	loaded	(/lib/systemd/system/nginx.service;	enabled;	preset:	enabled)
		Active:	active	(running)	since	Tue	2023-08-08	02:03:03	UTC;	5s	ago
		Docs:	https://nginx.org/en/docs/

			Process:	4929	ExecStart=/usr/sbin/nginx	-c	/etc/nginx/nginx.conf	(code=exited,	status=0/SUCCESS)
		Main	PID:	4930	(nginx)

						Tasks:	2	(limit:	2315)
					Memory:	1.8M
								CPU:	12ms
					CGroup:	/system.slice/nginx.service
													??4930	"nginx:	master	process	/usr/sbin/nginx	-c	/etc/nginx/nginx.conf"
													??4931	"nginx:	worker	process"

Step	3	-	Install	MariaDB
Debian	12	does	not	ship	with	MySQL	by	default	and	they	haven't	released	an	official	package	for	it	yet.	Therefore,	we	will	be	using	MariaDB	for	it.	MariaDB	doesn't	have	an	official	package	for
Debian	12	as	well	but	Debian	ships	with	it.	Therefore,	install	it	using	the	following	command.

$	sudo	apt	install	mariadb-server

Check	the	version	of	MySQL.

$	mysql	--version
mysql		Ver	15.1	Distrib	10.11.3-MariaDB,	for	debian-linux-gnu	(x86_64)	using		EditLine	wrapper

Run	the	MariaDB	secure	install	script.

$	sudo	mysql_secure_installation

You	will	be	asked	for	the	root	password.	Press	Enter	because	we	haven't	set	any	password	for	it.

NOTE:	RUNNING	ALL	PARTS	OF	THIS	SCRIPT	IS	RECOMMENDED	FOR	ALL	MariaDB
						SERVERS	IN	PRODUCTION	USE!		PLEASE	READ	EACH	STEP	CAREFULLY!

In	order	to	log	into	MariaDB	to	secure	it,	we'll	need	the	current
password	for	the	root	user.	If	you've	just	installed	MariaDB,	and
haven't	set	the	root	password	yet,	you	should	just	press	enter	here.

Enter	current	password	for	root	(enter	for	none):

Next,	you	will	be	asked	if	you	want	to	switch	to	the	Unix	socket	authentication	method.	The	unix_socket	plugin	allows	you	to	use	your	operating	system	credentials	to	connect	to	the	MariaDB
server.	Since	you	already	have	a	protected	root	account,	enter	n	to	proceed.

OK,	successfully	used	password,	moving	on...

Setting	the	root	password	or	using	the	unix_socket	ensures	that	nobody
can	log	into	the	MariaDB	root	user	without	the	proper	authorisation.

You	already	have	your	root	account	protected,	so	you	can	safely	answer	'n'.

Switch	to	unix_socket	authentication	[Y/n]	n

Next,	you	will	be	asked	if	you	want	to	change	your	root	password.	On	Debian	12,	the	root	password	is	tied	closely	to	automated	system	maintenance,	so	it	should	be	left	alone.	Type	n	to	proceed
further.

	...	skipping.

You	already	have	your	root	account	protected,	so	you	can	safely	answer	'n'.

Change	the	root	password?	[Y/n]	n

Next,	you	will	be	asked	certain	questions	to	improve	MariaDB	security.	Type	Y	to	remove	anonymous	users,	disallow	remote	root	logins,	remove	the	test	database,	and	reload	the	privilege
tables.

	...	skipping.

By	default,	a	MariaDB	installation	has	an	anonymous	user,	allowing	anyone
to	log	into	MariaDB	without	having	to	have	a	user	account	created	for
them.		This	is	intended	only	for	testing,	and	to	make	the	installation
go	a	bit	smoother.		You	should	remove	them	before	moving	into	a
production	environment.

Remove	anonymous	users?	[Y/n]	y
	...	Success!

Normally,	root	should	only	be	allowed	to	connect	from	'localhost'.		This
ensures	that	someone	cannot	guess	at	the	root	password	from	the	network.

Disallow	root	login	remotely?	[Y/n]	y
	...	Success!

By	default,	MariaDB	comes	with	a	database	named	'test'	that	anyone	can
access.		This	is	also	intended	only	for	testing,	and	should	be	removed
before	moving	into	a	production	environment.

Remove	test	database	and	access	to	it?	[Y/n]	y
	-	Dropping	test	database...
	...	Success!
	-	Removing	privileges	on	test	database...
	...	Success!

Reloading	the	privilege	tables	will	ensure	that	all	changes	made	so	far
will	take	effect	immediately.

Reload	privilege	tables	now?	[Y/n]	y
	...	Success!

Cleaning	up...

All	done!		If	you've	completed	all	of	the	above	steps,	your	MariaDB
installation	should	now	be	secure.

Thanks	for	using	MariaDB!

You	can	enter	the	MariaDB	shell	by	typing	sudo	mysql	or	sudo	mariadb	on	the	command	line.

Step	4	-	Configure	MariaDB
Log	in	to	the	MariaDB	shell.

$	sudo	mysql

Create	the	OpenEMR	database.

mysql>	CREATE	DATABASE	openemr;

Create	the	OpenEMR	user	account.

mysql>	CREATE	USER	'openemruser'@'localhost'	IDENTIFIED	BY	'Your_password2!';

Grant	all	privileges	on	the	database	to	the	user.

mysql>	GRANT	ALL	PRIVILEGES	ON	openemr.*	TO	'openemruser'@'localhost';

Since	we	are	not	modifying	the	root	user,	you	should	create	another	SQL	user	for	performing	administrative	tasks	which	employ	password	authentication.	Choose	a	strong	password	for	this
one.

MariaDB>	GRANT	ALL	ON	*.*	TO	'navjot'@'localhost'	IDENTIFIED	BY	'Yourpassword32!'	WITH	GRANT	OPTION;

Flush	user	privileges.

mysql>	FLUSH	PRIVILEGES;

Exit	the	shell.

mysql>	exit

Step	5	-	Install	PHP	and	its	extensions
Debian	12	ships	with	PHP	8.2	by	default.	You	can	install	it	by	running	the	following	command.

$	sudo	apt	install	php-fpm	php-mysql	php-bcmath	php-xml	php-zip	php-curl	php-mbstring	php-gd	php-tidy	php-intl	php-cli	php-soap	imagemagick	libtiff-tools	php-ldap

To	always	stay	on	the	latest	version	of	PHP	or	if	you	want	to	install	multiple	versions	of	PHP,	add	Ondrej's	PHP	repository.

First,	import	Sury's	repo	PHP	GPG	key.

$	sudo	curl	-sSLo	/usr/share/keyrings/deb.sury.org-php.gpg	https://packages.sury.org/php/apt.gpg

Add	Ondrej	Sury's	PHP	repository.

$	sudo	sh	-c	'echo	"deb	[signed-by=/usr/share/keyrings/deb.sury.org-php.gpg]	https://packages.sury.org/php/	$(lsb_release	-sc)	main"	>	/etc/apt/sources.list.d/php.list'

Update	the	system	repository	list.

$	sudo	apt	update	

Next,	install	PHP	and	its	extensions	required	by	OpenEMR.

$	sudo	apt	install	php8.2-fpm	php8.2-mysql	php8.2-bcmath	php8.2-xml	php8.2-zip	php8.2-curl	php8.2-mbstring	php8.2-gd	php8.2-tidy	php8.2-intl	php8.2-cli	php8.2-soap	imagemagick	libtiff-tools	php8.2-ldap

Verify	the	installation.

$	php	--version
PHP	8.2.8	(cli)	(built:	Jul	16	2023	11:00:43)	(NTS)
Copyright	(c)	The	PHP	Group
Zend	Engine	v4.2.8,	Copyright	(c)	Zend	Technologies
				with	Zend	OPcache	v8.2.8,	Copyright	(c),	by	Zend	Technologies

Step	6	-	Install	SSL
We	need	to	install	Certbot	to	generate	the	SSL	certificate.	You	can	either	install	Certbot	using	Debian's	repository	or	grab	the	latest	version	using	the	Snapd	tool.	We	will	be	using	the	Snapd
version.

Debian	12	comes	doesn't	come	with	Snapd	installed.	Install	Snapd	package.

$	sudo	apt	install	snapd

Run	the	following	commands	to	ensure	that	your	version	of	Snapd	is	up	to	date.

$	sudo	snap	install	core	&&	sudo	snap	refresh	core

Install	Certbot.

$	sudo	snap	install	--classic	certbot

Use	the	following	command	to	ensure	that	the	Certbot	command	can	be	run	by	creating	a	symbolic	link	to	the	/usr/bin	directory.

$	sudo	ln	-s	/snap/bin/certbot	/usr/bin/certbot

Verify	if	Certbot	is	functioning	properly.

$	certbot	--version
certbot	2.6.0

Run	the	following	command	to	generate	an	SSL	Certificate.

$	sudo	certbot	certonly	--nginx	--agree-tos	--no-eff-email	--staple-ocsp	--preferred-challenges	http	-m	name@example.com	-d	openemr.example.com

The	above	command	will	download	a	certificate	to	the	/etc/letsencrypt/live/openemr.example.com	directory	on	your	server.

Generate	a	Diffie-Hellman	group	certificate.

$	sudo	openssl	dhparam	-dsaparam	-out	/etc/ssl/certs/dhparam.pem	4096

Check	the	Certbot	renewal	scheduler	service.

$	sudo	systemctl	list-timers

You	will	find	snap.certbot.renew.service	as	one	of	the	services	scheduled	to	run.

NEXT																								LEFT										LAST																								PASSED				UNIT																						ACTIVATES
.....
Tue	2023-08-08	03:09:00	UTC	23min	left				Tue	2023-08-08	02:39:00	UTC	6min	ago		phpsessionclean.timer								phpsessionclean.service
Tue	2023-08-08	04:21:00	UTC	1h	35min	left	-																											-									snap.certbot.renew.timer					snap.certbot.renew.service
Tue	2023-08-08	06:25:00	UTC	3h	39min	left	Mon	2023-08-07	13:54:08	UTC	12h	ago			ntpsec-rotate-stats.timer				ntpsec-rotate-stats.service

Do	a	dry	run	of	the	process	to	check	whether	the	SSL	renewal	is	working	fine.

$	sudo	certbot	renew	--dry-run

If	you	see	no	errors,	you	are	all	set.	Your	certificate	will	renew	automatically.

Step	7	-	Download	OpenEMR
Visit	the	OpenEMR	download	page	and	grab	the	link	for	the	latest	version	of	OpenEMR.	Download	OpenEMR	to	the	server.

$	wget	https://sourceforge.net/projects/openemr/files/OpenEMR%20Current/7.0.1/openemr-7.0.1.tar.gz

Extract	the	files.

$	tar	-pxzf	openemr-7.0.1.tar.gz

Create	the	/var/www/html	directory.

$	sudo	mkdir	/var/www/html	-p

Move	the	extracted	files	to	the	web	directory.

$	sudo	mv	openemr-7.0.1	/var/www/html/openemr

Give	permissions	to	the	Nginx	user	over	the	web	root	directory.

$	sudo	chown	-R	nginx:nginx	/var/www/html/openemr

Step	8	-	Install	phpMyAdmin
Before	we	configure	PHP-FPM,	we	will	install	phpMyAdmin	which	you	can	use	to	browse	and	edit	the	database.

Download	phpMyAdmin's	archive	file	for	the	English	language.	Grab	the	link	for	the	latest	version	from	the	phpMyAdmin	Download	page.

$	wget	https://files.phpmyadmin.net/phpMyAdmin/5.2.1/phpMyAdmin-5.2.1-english.tar.gz

Extract	the	archive	to	the	public	directory.

$	sudo	tar	-xzf	phpMyAdmin-5.2.1-english.tar.gz	-C	/var/www/html/openemr

Switch	to	the	public	directory.

$	cd	/var/www/html/openemr

Rename	the	extracted	directory	to	something	obscure	to	improve	security.

$	sudo	mv	phpMyAdmin-5.2.1-english	sm175

Step	9	-	Configure	phpMyAdmin
Copy	the	sample	configuration	file.

$	sudo	cp	sm175/config.sample.inc.php	sm175/config.inc.php

Open	the	configuration	file	for	editing.

$	sudo	nano	sm175/config.inc.php

Find	the	line	$cfg['blowfish_secret']	=	'';	and	enter	a	32-character	random	string	for	cookie-based	authentication.

You	can	use	phpSolved's	online	blowfish	generator	or	do	it	via	the	command	line.

Copy	the	value	and	paste	it	as	shown.

$cfg['blowfish_secret']	=	'Tc/HfLPBOAPxJ-rhQP}HJoZEK69c3j:m';

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Change	the	ownership	of	the	phpMyAdmin	directory	to	the	Nginx	server.

$	sudo	chown	-R	nginx:nginx	/var/www/html/openemr/sm175

Delete	the	phpMyAdmin	setup	directory.

$	sudo	rm	-rf	/var/www/html/openemr/sm175/setup

Step	10	-	Configure	PHP-FPM
Open	the	file	/etc/php/8.2/fpm/pool.d/www.conf.

$	sudo	nano	/etc/php/8.2/fpm/pool.d/www.conf

We	need	to	set	the	Unix	user/group	of	PHP	processes	to	nginx.	Find	the	user=www-data	and	group=www-data	lines	in	the	file	and	change	them	to	nginx.

;	Unix	user/group	of	the	child	processes.	This	can	be	used	only	if	the	master
;	process	running	user	is	root.	It	is	set	after	the	child	process	is	created.
;	The	user	and	group	can	be	specified	either	by	their	name	or	by	their	numeric
;	IDs.
;	Note:	If	the	user	is	root,	the	executable	needs	to	be	started	with
;							--allow-to-run-as-root	option	to	work.
;	Default	Values:	The	user	is	set	to	master	process	running	user	by	default.
;																	If	the	group	is	not	set,	the	user's	group	is	used.
user	=	nginx
group	=	nginx
...

Find	the	listen.owner	=	www-data	and	listen.group	=	www-data	lines	in	the	file	and	change	them	to	nginx.

;	Set	permissions	for	unix	socket,	if	one	is	used.	In	Linux,	read/write
;	permissions	must	be	set	in	order	to	allow	connections	from	a	web	server.	Many
;	BSD-derived	systems	allow	connections	regardless	of	permissions.	The	owner
;	and	group	can	be	specified	either	by	name	or	by	their	numeric	IDs.
;	Default	Values:	Owner	is	set	to	the	master	process	running	user.	If	the	group
;																	is	not	set,	the	owner's	group	is	used.	Mode	is	set	to	0660.
listen.owner	=	nginx
listen.group	=	nginx

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Increase	the	execution	time	for	PHP-FPM	and	PHP-CLI	to	60	seconds.

$	sudo	sed	-i	's/max_execution_time	=	30/max_execution_time	=	60/'	/etc/php/8.2/fpm/php.ini

Set	the	value	of	the	variable	max_input_time	to	1.

$	sudo	sed	-i	's/max_input_time	=	60/max_input_time	=	-1/'	/etc/php/8.2/fpm/php.ini

Increase	the	memory	limit	for	PHP-FPM	from	128MB	to	512MB.

$	sudo	sed	-i	's/memory_limit	=	128M/memory_limit	=	512M/'	/etc/php/8.2/fpm/php.ini

Increase	the	file	upload	size	to	30MB.

$	sudo	sed	-i	's/post_max_size	=	8M/post_max_size	=	30M/'	/etc/php/8.2/fpm/php.ini
$	sudo	sed	-i	's/upload_max_filesize	=	2M/upload_max_filesize	=	30M/'	/etc/php/8.2/fpm/php.ini

Increase	the	number	of	maximum	input	variables	to	3000.

$	sudo	sed	-i	's/;max_input_vars	=	1000/max_input_vars	=	3000/g'	/etc/php/8.2/fpm/php.ini

Allow	accessing,	from	PHP's	perspective,	local	files	with	LOAD	DATA	statements.

$	sudo	sed	-i	's/;mysqli.allow_local_infile	=	On/mysqli.allow_local_infile	=	On/g'	/etc/php/8.2/fpm/php.ini

Restart	the	PHP-FPM	service.

$	sudo	systemctl	restart	php8.2-fpm

Change	the	group	of	the	PHP	sessions	directory	to	Nginx.

$	sudo	chgrp	-R	nginx	/var/lib/php/sessions

Step	11	-	Configure	Nginx
Create	and	open	the	file	/etc/nginx/conf.d/openemr.conf	for	editing.

$	sudo	nano	/etc/nginx/conf.d/openemr.conf

Paste	the	following	code	in	it.

server	{
				listen							443	ssl	http2;
				listen							[::]:443	ssl	http2;
				server_name		openemr.example.com;

				access_log		/var/log/nginx/openemr.access.log;
				error_log			/var/log/nginx/openemr.error.log;

				#	SSL
				ssl_certificate									/etc/letsencrypt/live/openemr.example.com/fullchain.pem;
				ssl_certificate_key					/etc/letsencrypt/live/openemr.example.com/privkey.pem;
				ssl_trusted_certificate	/etc/letsencrypt/live/openemr.example.com/chain.pem;
				ssl_session_timeout		1d;
				ssl_session_cache	shared:SSL:50m;
				ssl_session_tickets	off;
				ssl_protocols	TLSv1.2	TLSv1.3;
				ssl_prefer_server_ciphers	on;
				ssl_ciphers	ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384;
				ssl_ecdh_curve	X25519:prime256v1:secp384r1:secp521r1;
				ssl_stapling	on;
				ssl_stapling_verify	on;
				ssl_dhparam	/etc/ssl/certs/dhparam.pem;
				#	use	https://blog.cloudflare.com/announcing-1111	Cloudfare+Apnic	labs,	It	is	free	and	secure
				resolver	1.1.1.1	1.0.0.1	[2606:4700:4700::1111]	[2606:4700:4700::1001]	valid=300s;

				root	/var/www/html/openemr;

				index	index.php;

				location	/	{
								try_files	$uri	$uri/	/index.php;
				}

				#	Pass	PHP	Scripts	To	FastCGI	Server
				location	~*	\.php$	{
								try_files	$uri	=404;
								fastcgi_index		index.php;
								fastcgi_pass	unix:/run/php-fpm/www.sock;	#	Depends	On	The	PHP	Version
								fastcgi_param	SCRIPT_FILENAME		$realpath_root$fastcgi_script_name;
								fastcgi_param	DOCUMENT_ROOT	$realpath_root;
								include	fastcgi_params;
				}

				#	deny	access	to	writable	files/directories
				location	~*	^/sites/*/(documents|edi|era)	{
								deny	all;
								return	404;
				}

				#	deny	access	to	certain	directories
				location	~*	^/(contrib|tests)	{
	 				deny	all;
								return	404;
				}

				#	Alternatively	all	access	to	these	files	can	be	denied
				location	~*	^/(admin|setup|acl_setup|acl_upgrade|sl_convert|sql_upgrade|gacl/setup|ippf_upgrade|sql_patch)\.php	{
								deny	all;
								return	404;
				}

				location	=	/favicon.ico	{
								log_not_found	off;
								access_log	off;
				}

				location	=	/robots.txt		{
								log_not_found	off;
								access_log	off;
				}

				location	~	/\.	{
								deny	all;
				}
}

#	enforce	HTTPS
server	{
				listen							80;
				listen							[::]:80;
				server_name		openemr.example.com;
				return	301			https://$host$request_uri;
}

Notice	the	root	directory	to	be	used	in	the	Nginx	configuration	is	/var/www/html/wallabag/public/.

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted	once	finished.

Open	the	file	/etc/nginx/nginx.conf	for	editing.

$	sudo	nano	/etc/nginx/nginx.conf

Add	the	following	line	before	the	line	include	/etc/nginx/conf.d/*.conf;.

server_names_hash_bucket_size		64;

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Verify	the	Nginx	configuration	file	syntax.

$	sudo	nginx	-t
nginx:	the	configuration	file	/etc/nginx/nginx.conf	syntax	is	ok
nginx:	configuration	file	/etc/nginx/nginx.conf	test	is	successful

Restart	the	Nginx	service.

$	sudo	systemctl	restart	nginx

Step	12	-	Install	OpenEMR
Open	the	URL	https://openemr.example.com	in	your	browser	and	you	will	see	the	following	setup	screen.

Here	it	checks	for	file	permissions	and	confirms	whether	you	can	proceed	to	step	1	or	not.	If	you	see	the	word	ready	in	green,	it	means	you	can	proceed.	Click	the	blue	button	to	proceed	to	step
1.

On	the	next	page,	you	will	be	asked	if	you	want	the	installer	to	create	the	database	or	use	a	pre-made	one.	Select	the	option	I	have	already	created	the	database	and	click	the	button	to
proceed	to	step	2.

On	the	next	page,	fill	in	the	database	credentials	you	configured	in	step	4	before.	Also,	enter	your	administrator	account	credentials.	Make	sure	your	username	is	12	or	more	characters	long
otherwise,	you	will	get	an	error.	You	can	enable	two-factor	authentication	(2FA)	here	but	it	is	recommended	to	configure	it	later	after	installation.	Click	the	button	to	create	the	database	and
the	user	account.

The	next	page	will	show	the	installation	status	and	will	show	you	the	username	and	password.	Click	the	button	to	proceed	to	step	4.

The	next	page	will	list	the	recommended	and	current	values	from	your	php.ini	file.	Make	sure	the	current	values	satisfy	the	requirement.	The	installer	shows	the	wrong	values	for	the	variable
max_execution_time	for	some	reason	even	if	you	have	set	it	correctly.	You	can	ignore	this.	You	can	verify	the	current	value	by	using	the	following	command.

Once	you	are	satisfied,	click	the	button	to	proceed	to	step	5.

The	next	step	lists	Apache	server	settings	which	we	will	ignore	since	we	are	using	the	Nginx	server.	Click	the	button	to	proceed	to	the	next	page.

Here	you	will	be	asked	to	select	a	theme	for	the	administration	panel.	Select	the	Keep	Current	option	and	click	the	button	to	proceed.	You	can	change	the	theme	from	the	administration	panel
later	on	however	you	won't	be	able	to	see	how	they	look.	If	you	choose	from	the	installer	page,	you	can	also	check	how	they	look	before	selecting.	We	will	stick	with	the	default	theme.

The	last	page	lists	some	final	notes	about	the	software	and	account	credentials.	Click	the	Start	button	to	open	the	login	page.

You	will	get	an	OpenEMR	registration	popup	to	get	announcements	from	their	site.	You	can	ignore	and	enter	your	credentials	and	click	the	Login	button	to	access	the	dashboard.

If	you	didn't	configure	two-factor	authentication	during	installation,	do	so	by	clicking	the	avatar	icon	at	the	top	right	and	selecting	the	MFA	Management	option.

On	the	next	page,	select	the	Authentication	method	from	the	dropdown	menu	and	start	configuring.

You	can	start	using	OpenEMR	to	manage	your	health	business	from	here	on.	To	access	phpMyAdmin,	visit	the	URL	https://openemr.example.com/sm175/	in	your	browser.	You	can	either	log	in	using
the	OpenEMR	database	credentials	or	the	user	with	root	privileges	you	created	in	step	4	to	log	in	to	phpMyAdmin.

Conclusion
This	concludes	our	tutorial	on	installing	OpenEMR	on	a	Debian	12	server.	If	you	have	any	questions,	post	them	in	the	comments	below.

