
comment-installer-lomp-stack-openlitespeed-mysql-and-php-sur-debian-12
OpenLiteSpeed	is	a	lightweight	and	open-source	version	of	the	LiteSpeed	Server	developed	by	LiteSpeed	Technologies.	It	supports	Apache	Rewrite	rules,	HTTP/2	and	HTTP/3	along	with	TLS	
v1.3	and	QUIC	protocols.	It	comes	with	a	WebGUI-based	Administration	panel	which	makes	it	different	from	other	servers	and	easier	to	manage.

The	LOMP	Stack	is	an	acronym	for	Linux,	OpenLiteSpeed,	MySQL/MariaDB,	and	PHP.	Litespeed	servers	are	known	for	their	speed,	especially	with	PHP	which	integrates	using	the	LiteSpeed	
Server	Application	Programming	Interface	(LSAPI).	The	LiteSpeed	PHP	(LSPHP)	interpreter	serves	dynamic	PHP	pages	via	LSAPI.

In	this	tutorial,	we	will	learn	how	to	install	an	OpenLiteSpeed	Server	on	a	Debian	12	machine.

Prerequisites
A	server	running	Debian	12.

A	non-root	user	with	sudo	privileges.

A	fully	qualified	domain	name	(FQDN)	like	example.com	pointing	to	the	server.

SELinux	doesn't	need	to	be	disabled	or	configured	to	work	with	OpenLiteSpeed.

Make	sure	everything	is	updated.

$	sudo	apt	update
$	sudo	apt	upgrade

Few	packages	that	your	system	needs.

$	sudo	apt	install	wget	curl	nano	ufw	software-properties-common	dirmngr	apt-transport-https	gnupg2	ca-certificates	lsb-release	debian-archive-keyring	unzip	-y

Some	of	these	packages	may	already	be	installed	on	your	system.

Step	1	-	Configure	Firewall
The	first	step	is	to	configure	the	firewall.	Debian	comes	with	ufw	(Uncomplicated	Firewall)	by	default.

Check	if	the	firewall	is	running.

$	sudo	ufw	status

You	will	get	the	following	output.

Status:	inactive

Allow	SSH	port	so	that	the	firewall	doesn't	break	the	current	connection	upon	enabling	it.

$	sudo	ufw	allow	OpenSSH

Allow	HTTP	and	HTTPS	ports	as	well.

$	sudo	ufw	allow	http
$	sudo	ufw	allow	https

Open	ports	related	to	Openlitespeed.

$	sudo	ufw	allow	7080/tcp

Enable	the	Firewall

$	sudo	ufw	enable
Command	may	disrupt	existing	ssh	connections.	Proceed	with	operation	(y|n)?	y
Firewall is active and enabled on system startup

Check	the	status	of	the	firewall	again.

$	sudo	ufw	status

You	should	see	a	similar	output.

Status:	active

To		 		Action		 		From
--		 		------		 		----
OpenSSH		 		ALLOW		 		Anywhere
80/tcp		 		ALLOW		 		Anywhere
443		 		ALLOW		 		Anywhere
7080/tcp		 		ALLOW		 		Anywhere
OpenSSH	(v6)		 		ALLOW		 		Anywhere	(v6)
80/tcp	(v6)		 		ALLOW		 		Anywhere	(v6)
443	(v6)		 		ALLOW		 		Anywhere	(v6)
7080/tcp	(v6)		 		ALLOW		 		Anywhere	(v6)

Step	2	-	Install	OpenLiteSpeed
OpenLiteSpeed	doesn't	ship	a	package	for	Debian	12.	Therefore,	we	will	build	our	copy	from	the	source	code.

Download	the	OpenLiteSpeed	source	code	file.	You	can	get	the	link	to	the	latest	source	code	file	from	the	OpenLiteSpeed	official	downloads	page.

$	wget	https://openlitespeed.org/packages/openlitespeed-1.7.18.src.tgz

Extract	the	file.

$	tar	-zxf	openlitespeed-*.tgz

Switch	to	the	extracted	directory.

$	cd	openlitespeed-1.7.18

Build	the	server	package.

$	sudo	./build.sh

You	might	have	to	wait	a	good	5-10	minutes	for	the	process	to	finish.	Ignore	any	warnings	you	receive	during	the	process.	You	will	receive	the	following	output	when	it	is	finished.

[100%]	Linking	CXX	shared	library	modpagespeed.so
/usr/bin/ld:	warning:	140.x25519-asm-x86_64.o.o:	missing	.note.GNU-stack	section	implies	executable	stack
/usr/bin/ld:	NOTE:	This	behaviour	is	deprecated	and	will	be	removed	in	a	future	version	of	the	linker
[100%]	Built	target	modpagespeed
Start	to	pack	files.
-e	Building	finished,	please	run	./install.sh	for	installation.
-e	You	may	want	to	update	the	ols.conf	to	change	the	settings	before	installation.
-e	Enjoy.

Once	the	process	is	finished,	open	the	file	ols.conf	for	editing.

$	sudo	nano	ols.conf

Edit	the	file	as	shown	below.

#If	you	want	to	change	the	default	values,	please	update	this	file.
#

SERVERROOT=/usr/local/lsws
OPENLSWS_USER=nobody
OPENLSWS_GROUP=nobody
OPENLSWS_ADMIN=navjot
OPENLSWS_EMAIL=navjot@example.com
OPENLSWS_ADMINSSL=yes
OPENLSWS_ADMINPORT=7080
USE_LSPHP7=yes
DEFAULT_TMP_DIR=/tmp/lshttpd
PID_FILE=/tmp/lshttpd/lshttpd.pid
OPENLSWS_EXAMPLEPORT=8088

#You	can	set	password	here
#OPENLSWS_PASSWORD=

Don't	add	your	password	here.	We	will	set	the	password	later	using	the	command	line.	Once	you	are	finished,	save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Now	that	OpenLiteSpeed	is	built,	let	us	install	it.

$	sudo	./install.sh

The	installer	script	installs	and	enables	the	lsws	service	for	the	server.	You	will	receive	the	following	output	when	finished.

Updating	webcache	manager,	please	waiting	...
Downloading	latest	shared	code	tar	file...
Checking	tar	file	md5...
Removing	existing	shared	code	directory...
Extracting	downloaded	shared	code...
Removing	local	shared	code	tar	file...
Updating	lscmctl	script...
Done!

-e	Installation	finished,	Enjoy!

-e	Your	webAdmin	password	is	kXjWTl5j,	written	to	file	/usr/local/lsws/adminpasswd.

Start	the	OpenLiteSpeed	server.

$	sudo	systemctl	start	lsws

Check	the	status	of	the	service.

$	sudo	systemctl	status	lsws
?	lsws.service	-	LSB:	lshttpd
					Loaded:	loaded	(/etc/init.d/lsws;	generated)
					Active:	active	(running)	since	Wed	2023-09-27	15:55:13	UTC;	4h	18min	ago
							Docs:	man:systemd-sysv-generator(8)
						Tasks:	4	(limit:	4652)
					Memory:	79.2M
								CPU:	37.823s
					CGroup:	/system.slice/lsws.service
													??64164	"openlitespeed	(lshttpd	-	main)"
													??64171	"openlitespeed	(lscgid)"
													??64184	"openlitespeed	(lshttpd	-	#01)"
													??64185	"openlitespeed	(lshttpd	-	#02)"

Sep	27	15:55:11	lomp	systemd[1]:	Starting	lsws.service	-	LSB:	lshttpd...
Sep	27	15:55:13	lomp	systemd[1]:	Started	lsws.service	-	LSB:	lshttpd.

Check	the	version	of	the	server	installed.

$	/usr/local/lsws/bin/lshttpd	-v
LiteSpeed/1.7.18	Open	(BUILD	built:	Tue	Aug	29	12:59:39	UTC	2023)
								module	versions:
								lsquic	3.2.0
								modgzip	1.1
								cache	1.64
								mod_security	1.4	(with	libmodsecurity	v3.0.9)

Create	the	Administrator	Password

You	can	use	the	administrator	password	given	during	the	installation	process.	However,	you	should	create	your	own	by	resetting	it.	Run	the	password	reset	script.

$	sudo	/usr/local/lsws/admin/misc/admpass.sh

You	will	get	the	following	output.	Choose	your	username	and	set	a	strong	password.

Please	specify	the	user	name	of	administrator.
This	is	the	user	name	required	to	login	the	administration	Web	interface.

User	name	[admin]:	navjot

Please	specify	the	administrator's	password.
This	is	the	password	required	to	login	the	administration	Web	interface.

Password:	
Retype	password:	
Administrator's	username/password	is	updated	successfully!

You	can	now	use	the	new	administrator	password.

Open	http://<YOURSERVERIP>:7080	to	access	OpenLiteSpeed's	administration	panel.	On	your	first	login,	your	browser	will	warn	that	your	connection	is	not	private.	Click	Advanced	and	click	"Accept
the	risk	and	Continue"	(in	the	case	of	Firefox)	or	"Proceed	to	<YOURSERVERIP>(unsafe)"	(in	the	case	of	Chromium-based	browser).	You	won't	see	the	warning	again.

You	should	see	the	login	page.

Enter	the	credentials	you	set	earlier,	and	press	the	Login	button	to	proceed.

You	will	get	the	following	screen.

Step	3	-	Install	MariaDB
Debian	doesn't	ship	with	MySQL	server	anymore.	Therefore,	we	will	be	using	the	MySQL	drop-in	replacement,	MariaDB.	But	before	proceeding	ahead,	we	need	to	update	the	LiteSpeed
repository.	The	Litespeed	repository	added	via	the	installer	doesn't	work	properly.

Open	the	file	/etc/apt/sources.list.d/lst_debian_repo.list	for	editing.

$	sudo	nano	/etc/apt/sources.list.d/lst_debian_repo.list

Change	the	file	contents	by	adding	the	Debian	11	(bullseye)	to	it.	We	can't	use	Debian	12	(bookworm)	to	it	since	the	repository	is	not	updated	for	it.

deb	http://rpms.litespeedtech.com/debian/	bullseye	main

Once	you	are	finished,	save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Install	the	MariaDB	server.

$	sudo	apt	install	mariadb-server

MariaDB	service	is	automatically	started	and	running	post-install.

Check	the	status	of	the	service.

$	sudo	systemctl	status	mariadb

You	will	get	the	following	output.

?	mariadb.service	-	MariaDB	10.11.3	database	server
					Loaded:	loaded	(/lib/systemd/system/mariadb.service;	enabled;	preset:	enabled)
					Active:	active	(running)	since	Fri	2023-09-29	01:21:09	UTC;	1min	26s	ago
							Docs:	man:mariadbd(8)
													https://mariadb.com/kb/en/library/systemd/
			Main	PID:	361450	(mariadbd)
					Status:	"Taking	your	SQL	requests	now..."
						Tasks:	10	(limit:	4652)
					Memory:	190.8M
								CPU:	411ms
					CGroup:	/system.slice/mariadb.service
													??361450	/usr/sbin/mariadbd

Run	the	MariaDB	security	script.

$	sudo	mariadb-secure-installation

You	will	be	asked	for	the	root	password.	Press	Enter	because	we	haven't	set	any	password	for	it.

NOTE:	RUNNING	ALL	PARTS	OF	THIS	SCRIPT	IS	RECOMMENDED	FOR	ALL	MariaDB
						SERVERS	IN	PRODUCTION	USE!		PLEASE	READ	EACH	STEP	CAREFULLY!

In	order	to	log	into	MariaDB	to	secure	it,	we'll	need	the	current
password	for	the	root	user.	If	you've	just	installed	MariaDB,	and
haven't	set	the	root	password	yet,	you	should	just	press	enter	here.

Enter	current	password	for	root	(enter	for	none):

Next,	you	will	be	asked	if	you	want	to	switch	to	the	Unix	socket	authentication	method.	The	unix_socket	plugin	allows	you	to	use	your	operating	system	credentials	to	connect	to	the	MariaDB
server.	Since	you	already	have	a	protected	root	account,	enter	n	to	proceed.

OK,	successfully	used	password,	moving	on...

Setting	the	root	password	or	using	the	unix_socket	ensures	that	nobody
can	log	into	the	MariaDB	root	user	without	the	proper	authorisation.

You	already	have	your	root	account	protected,	so	you	can	safely	answer	'n'.

Switch	to	unix_socket	authentication	[Y/n]	n

Next,	you	will	be	asked	if	you	want	to	change	your	root	password.	On	Debian	12,	the	root	password	is	tied	closely	to	automated	system	maintenance,	so	it	should	be	left	alone.	Type	n	to	proceed
further.

	...	skipping.

You	already	have	your	root	account	protected,	so	you	can	safely	answer	'n'.

Change	the	root	password?	[Y/n]	n

Next,	you	will	be	asked	certain	questions	to	improve	MariaDB	security.	Type	Y	to	remove	anonymous	users,	disallow	remote	root	logins,	remove	the	test	database,	and	reload	the	privilege
tables.

	...	skipping.

By	default,	a	MariaDB	installation	has	an	anonymous	user,	allowing	anyone
to	log	into	MariaDB	without	having	to	have	a	user	account	created	for
them.		This	is	intended	only	for	testing,	and	to	make	the	installation
go	a	bit	smoother.		You	should	remove	them	before	moving	into	a
production	environment.

Remove	anonymous	users?	[Y/n]	y
	...	Success!

Normally,	root	should	only	be	allowed	to	connect	from	'localhost'.		This
ensures	that	someone	cannot	guess	at	the	root	password	from	the	network.

Disallow	root	login	remotely?	[Y/n]	y
	...	Success!

By	default,	MariaDB	comes	with	a	database	named	'test'	that	anyone	can
access.		This	is	also	intended	only	for	testing,	and	should	be	removed
before	moving	into	a	production	environment.

Remove	test	database	and	access	to	it?	[Y/n]	y
	-	Dropping	test	database...
	...	Success!
	-	Removing	privileges	on	test	database...
	...	Success!

Reloading	the	privilege	tables	will	ensure	that	all	changes	made	so	far
will	take	effect	immediately.

Reload	privilege	tables	now?	[Y/n]	y
	...	Success!

Cleaning	up...

All	done!		If	you've	completed	all	of	the	above	steps,	your	MariaDB
installation	should	now	be	secure.

Thanks	for	using	MariaDB!

You	can	enter	the	MariaDB	shell	by	typing	sudo	mysql	or	sudo	mariadb	on	the	command	line.

Step	4	-	Install	PHP
Since	we	built	our	package	from	the	source,	it	compiles	and	builds	an	old	version	of	PHP	which	is	not	recommended	for	use.	You	can	check	it	via	the	following	command.

$	/usr/local/lsws/fcgi-bin/lsphp	-v
PHP	5.6.40	(litespeed)	(built:	May	10	2023	23:03:31)
Copyright	(c)	1997-2016	The	PHP	Group
Zend	Engine	v2.6.0,	Copyright	(c)	1998-2016	Zend	Technologies

Therefore,	we	need	to	build	and	install	the	latest	version	of	PHP.	But,	before	we	proceed,	we	need	to	install	the	build	tools.

$	sudo	apt	install	build-essential	autoconf	libtool	bison	re2c	pkg-config

The	next	step	is	to	install	the	packages	required	by	the	PHP	build	process.

$	sudo	apt	install	libssl-dev	libsqlite3-dev	zlib1g-dev	libcurl4-openssl-dev	libonig-dev	libzip-dev	libmemcached-dev	libreadline-dev	libgmp-dev	libpng-dev	libjpeg-dev	libwebp-dev	libxpm-dev	libicu-dev	libfreetype6-dev	libxslt-dev	libldb-dev	libtidy-dev	libvips-dev	libsodium-dev	libavif-dev	libldap2-dev	libxml2-dev	libkrb5-dev	libc-client2007e-dev	libpq-dev	libargon2-0	libargon2-dev	libbz2-dev	libffi-dev	libc-client-dev	libpspell-dev	flex	libgmp3-dev	libmcrypt-dev	libmhash-dev	freetds-dev	libmariadb-dev	libmariadb-dev-compat	libncurses5-dev	libpcre3-dev	libaspell-dev	librecode-dev	libsnmp-dev

Next,	download	the	PHP	source	code.	We	will	download	the	PHP	8.2.10	version	which	is	the	latest	version	available	at	the	time	of	writing.

$	cd	~
$	wget	https://www.php.net/distributions/php-8.2.11.tar.gz

Extract	the	files.

$	tar	-xzf	php-8.2.11.tar.gz

Switch	to	the	downloaded	directory.

$	cd	php-8.2.11

Next,	run	the	configure	script	with	the	following	options.	The	--enable-litespeed	option	is	essential.

$	sudo	./configure	--prefix=/usr/local/lsws/lsphp82	--enable-bcmath	--enable-calendar	--enable-exif	--enable-ftp	--enable-gd	--enable-intl	--enable-mbregex	--enable-mbstring	--enable-mysqlnd	--enable-opcache	--enable-shmop	--enable-soap	--enable-sockets	--enable-sysvsem	--enable-sysvshm	--with-avif	--with-curl	--with-ffi	--with-freetype	--with-gettext	--with-gmp	--with-imap	--with-imap-ssl	--with-jpeg	--with-kerberos	--with-libxml	--with-ldap		--with-mysqli	--with-mysql-sock=/run/mysqld/mysqld.sock	--with-openssl	--with-password-argon2	--with-pdo-mysql=mysqlnd	--with-pdo-pgsql=/usr/bin/pg_config	--with-pear	--with-pspell	--with-readline	--with-sodium	--with-tidy	--with-webp	--with-xpm	--with-xsl	--with-zip	--with-zlib	--enable-litespeed

You	should	get	the	following	output	once	the	script	is	finished.

+--+
|	License:																																																											|
|	This	software	is	subject	to	the	PHP	License,	available	in	this					|
|	distribution	in	the	file	LICENSE.	By	continuing	this	installation		|
|	process,	you	are	bound	by	the	terms	of	this	license	agreement.					|
|	If	you	do	not	agree	with	the	terms	of	this	license,	you	must	abort	|
|	the	installation	process	at	this	point.																												|
+--+

Thank	you	for	using	PHP.

Compile	the	source.

$	sudo	make	-j	$(nproc)

You	will	receive	a	similar	output	once	finished.

/bin/bash	/home/navjot/php-8.2.11/libtool	--silent	--preserve-dup-deps	--tag	CC	--mode=link	cc	-shared	-I/home/navjot/php-8.2.11/include	-I/home/navjot/php-8.2.11/main	-I/home/navjot/php-8.2.11	-I/home/navjot/php-8.2.11/ext/date/lib	-I/usr/include/libxml2	-I/usr/include/x86_64-linux-gnu	-I/usr/include/libpng16	-I/usr/include/freetype2	-I/usr/include/c-client	-I/home/navjot/php-8.2.11/ext/mbstring/libmbfl	-I/home/navjot/php-8.2.11/ext/mbstring/libmbfl/mbfl	-I/usr/include/postgresql	-I/usr/include/pspell	-I/usr/include/tidy	-I/home/navjot/php-8.2.11/TSRM	-I/home/navjot/php-8.2.11/Zend		-D_GNU_SOURCE	-I/usr/include/c-client		-fno-common	-Wstrict-prototypes	-Wformat-truncation	-Wlogical-op	-Wduplicated-cond	-Wno-clobbered	-Wall	-Wextra	-Wno-strict-aliasing	-Wno-unused-parameter	-Wno-sign-compare	-g	-O2	-fvisibility=hidden	-Wimplicit-fallthrough=1	-DZEND_SIGNALS					-o	ext/opcache/opcache.la	-export-dynamic	-avoid-version	-prefer-pic	-module	-rpath	/home/navjot/php-8.2.11/modules	-L/usr/lib/x86_64-linux-gnu/mit-krb5	-L/usr/lib/x86_64-linux-gnu	ext/opcache/ZendAccelerator.lo	ext/opcache/zend_accelerator_blacklist.lo	ext/opcache/zend_accelerator_debug.lo	ext/opcache/zend_accelerator_hash.lo	ext/opcache/zend_accelerator_module.lo	ext/opcache/zend_persist.lo	ext/opcache/zend_persist_calc.lo	ext/opcache/zend_file_cache.lo	ext/opcache/zend_shared_alloc.lo	ext/opcache/zend_accelerator_util_funcs.lo	ext/opcache/shared_alloc_shm.lo	ext/opcache/shared_alloc_mmap.lo	ext/opcache/shared_alloc_posix.lo	ext/opcache/jit/zend_jit.lo	ext/opcache/jit/zend_jit_gdb.lo	ext/opcache/jit/zend_jit_vm_helpers.lo	-lrt
/bin/bash	/home/navjot/php-8.2.11/libtool	--silent	--preserve-dup-deps	--tag	CC	--mode=install	cp	ext/opcache/opcache.la	/home/navjot/php-8.2.11/modules

Build	complete.
Don't	forget	to	run	'make	test'.

Once	you	are	finished,	run	the	following	command	to	try	and	check	the	version.

$./sapi/litespeed/php	-v
PHP	8.2.11	(litespeed)	(built:	Sep	28	2023	18:40:08)
Copyright	(c)	The	PHP	Group
Zend	Engine	v4.2.11,	Copyright	(c)	Zend	Technologies

Install	PHP.

$	sudo	make	install

You	will	get	the	following	output.

Installing	shared	extensions:					/usr/local/lsws/lsphp82/lib/php/extensions/no-debug-non-zts-20220829/
Installing	PHP	CLI	binary:								/usr/local/lsws/lsphp82/bin/
Installing	PHP	CLI	man	page:						/usr/local/lsws/lsphp82/php/man/man1/
Installing	PHP	LiteSpeed	binary:		/usr/local/lsws/lsphp82/bin/
Installing	phpdbg	binary:									/usr/local/lsws/lsphp82/bin/
Installing	phpdbg	man	page:							/usr/local/lsws/lsphp82/php/man/man1/
Installing	PHP	CGI	binary:								/usr/local/lsws/lsphp82/bin/
Installing	PHP	CGI	man	page:						/usr/local/lsws/lsphp82/php/man/man1/
Installing	build	environment:					/usr/local/lsws/lsphp82/lib/php/build/
Installing	header	files:										/usr/local/lsws/lsphp82/include/php/
Installing	helper	programs:							/usr/local/lsws/lsphp82/bin/
		program:	phpize
		program:	php-config
Installing	man	pages:													/usr/local/lsws/lsphp82/php/man/man1/
		page:	phpize.1
		page:	php-config.1
Installing	PEAR	environment:						/usr/local/lsws/lsphp82/lib/php/
[PEAR]	Archive_Tar				-	installed:	1.4.14
[PEAR]	Console_Getopt	-	installed:	1.4.3
[PEAR]	Structures_Graph-	installed:	1.1.1
[PEAR]	XML_Util							-	installed:	1.4.5
warning:	pear/PEAR	dependency	package	"pear/Archive_Tar"	installed	version	1.4.14	is	not	the	recommended	version	1.4.4
[PEAR]	PEAR											-	installed:	1.10.13
Wrote	PEAR	system	config	file	at:	/usr/local/lsws/lsphp82/etc/pear.conf
You	may	want	to	add:	/usr/local/lsws/lsphp82/lib/php	to	your	php.ini	include_path
Installing	PDO	headers:											/usr/local/lsws/lsphp82/include/php/ext/pdo/

Verify	the	PHP	installation.	There	are	two	PHP	binaries	available	in	the	/usr/local/lsws/lsphp82/bin	directory.	One	is	the	normal	php	which	is	the	command-line	version	and	the	other	is	the	Litespeed
version	lsphp.	The	second	one	is	the	one	we	will	be	using.

$	/usr/local/lsws/lsphp82/bin/lsphp	-v
PHP	8.2.11	(litespeed)	(built:	Sep	28	2023	18:40:08)
Copyright	(c)	The	PHP	Group
Zend	Engine	v4.2.11,	Copyright	(c)	Zend	Technologies

You	can	check	the	list	of	enabled	PHP	modules.

$	/usr/local/lsws/lsphp82/bin/php	--modules
[PHP	Modules]
bcmath
calendar
Core
ctype
curl
date
dom
exif
FFI
fileinfo
filter
ftp
gd
gettext
gmp
hash
iconv
imap
intl
json
ldap
libxml
mbstring
mysqli
mysqlnd
openssl
pcre
PDO
pdo_mysql
pdo_pgsql
pdo_sqlite
Phar
posix
pspell
random
readline
Reflection
session
shmop
SimpleXML
soap
sockets
sodium
SPL
sqlite3
standard
sysvsem
sysvshm
tidy
tokenizer
xml
xmlreader
xmlwriter
xsl
zip
zlib

[Zend	Modules]

Copy	the	php.ini-production	from	the	install	folder	to	the	/usr/local/lsws/lsphp82/lib	folder.

$	sudo	cp	php.ini-production	/usr/local/lsws/lsphp82/lib/php.ini

We	will	configure	OpenLiteSpeed	to	work	with	PHP	later.

Open	the	php.ini	for	editing.

$	sudo	nano	/usr/local/lsws/lsphp82/lib/php.ini

Find	the	variable	include_path	and	change	it's	value	as	shown	below.

$;;;;;;;;;;;;;;;;;;;;;;;;;
;	Paths	and	Directories	;
;;;;;;;;;;;;;;;;;;;;;;;;;

;	UNIX:	"/path1:/path2"
include_path	=	/usr/local/lsws/lsphp82/lib/php

Once	you	are	finished,	save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Step	5	-	Configure	MariaDB
Log	in	to	the	MariaDB	shell.

$	sudo	mysql

Create	a	test	database.	Replace	testdb	with	the	appropriate	database	name	of	your	choice.

mysql>	CREATE	DATABASE	testdb;

Create	a	test	user.	Replace	testuser	with	an	appropriate	username.	Replace	Your_Password123	with	a	strong	password.

mysql>	CREATE	USER	'testuser'@'localhost'	IDENTIFIED	BY	'Your_Password123';

Grant	all	privileges	on	the	database	to	the	user.

mysql>	GRANT	ALL	PRIVILEGES	ON	testdb.*	TO	'testuser'@'localhost';

Since	we	are	not	modifying	the	root	user,	you	should	create	another	SQL	user	for	performing	administrative	tasks	that	employ	password	authentication.	Choose	a	strong	password	for	this	one.

MariaDB>	GRANT	ALL	ON	*.*	TO	'navjot'@'localhost'	IDENTIFIED	BY	'Yourpassword32!'	WITH	GRANT	OPTION;

Flush	user	privileges.

mysql>	FLUSH	PRIVILEGES;

Exit	the	MySQL	shell.

mysql>	exit

Step	6	-	Configure	OpenLiteSpeed
Switch	the	HTTP	port	back	to	80

Let	us	change	the	default	HTTP	port	to	80.	Log	in	to	your	administration	panel	at	http://<YOURSERVERIP>:7080	with	the	credentials	you	just	created.

Visit	the	Listeners	section	from	the	left.	You	will	see	the	default	listeners	with	port	8080.

Click	the	View	button	to	see	the	detailed	configuration.	On	the	next	page	under	Listener	Default	>	General	Page,	click	on	the	Edit	icon	and	change	the	port	from	8080	to	80.

Click	Save	and	then	restart	the	server	by	clicking	on	the	Graceful	restart	button.

Step	7	-	Configure	PHP
In	this	step,	we	need	to	associate	our	copy	of	PHP	8.2	with	the	server.

Click	on	the	Server	Configuration	section	on	the	left	and	then	on	the	tab	External	App.	You	will	see	an	existing	LiteSpeed	App	for	PHP.	We	will	make	some	edits	to	it.

Click	on	the	Edit	button	to	edit	the	PHP	app.

Next,	match	the	configuration	as	shown	below.	Leave	all	the	other	fields	blank.

Name:	lsphp
Address:	uds://tmp/lshttpd/lsphp.sock
Max	Connections:	35
Environment:	PHP_LSAPI_MAX_REQUESTS=500
													PHP_LSAPI_CHILDREN=35
													LSAPI_AVOID_FORK=200M
Initial	Request	Timeout	(secs):	60
Retry	Timeout	:	0
Persistent	Connection:	Yes
Response	Buffering:	no
Start	By	Server:	Yes(Through	CGI	Daemon)
Command:	lsphp82/bin/lsphp
Back	Log:	100
Instances:	1
Priority:	0
Memory	Soft	Limit	(bytes):	2047M
Memory	Hard	Limit	(bytes):	2047M
Process	Soft	Limit:	1400
Process	Hard	Limit:	1500

Click	Save	when	finished.

Now	that	we	have	created	our	own	PHP	8.2	app,	we	need	to	tell	the	server	to	start	using	it.	Since	we	edited	the	default	listing,	it	is	already	configured.	Restart	the	server	by	clicking	on	the
Graceful	restart	button.

To	test	whether	your	PHP	has	been	switched	correctly,	visit	http://<YOURSERVERIP>/phpinfo.php	in	your	browser.

Restart	PHP

On	OpenLiteSpeed,	if	you	edit	php.ini	or	install	a	new	PHP	module,	restarting	the	server	won’t	show	the	changes.	You	will	need	to	restart	the	PHP	process	for	that.	First,	you	will	need	to	locate
the	process	IDs	for	the	lsphp	process.

$	ps	aux	|	grep	lsphp
nobody				500747		0.9		0.8	121104	34928	?								S				05:58			0:00	lsphp
nobody				500748		0.0		0.4	121104	16760	?								Ss			05:58			0:00	lsphp
navjot				500751		0.0		0.0			3876		1908	pts/0				S+			05:58			0:00	grep	lsphp

Manually	kill	the	lsphp	processes.

$	sudo	kill	-9	500747
$	sudo	kill	-9	500748

Restart	the	Server.

$	sudo	systemctl	restart	lsws

Step	8	-	Create	VirtualHost
First,	we	need	to	create	directories	for	our	virtual	host.

$	sudo	mkdir	/usr/local/lsws/example.com/{html,logs}	-p

The	html	directory	will	hold	the	public	files	and	the	logs	directory	will	contain	server	logs.

Next,	open	the	Admin	console,	access	the	Virtual	Hosts	section	from	the	left,	and	click	the	Add	button.

Fill	in	the	values	as	specified

Virtual	Host	Name:	example.com
Virtual	Host	Root:	$SERVER_ROOT/example.com/
Config	File:	$SERVER_ROOT/conf/vhosts/$VH_NAME/vhconf.conf
Follow	Symbolic	Link:	Yes
Enable	Scripts/ExtApps:	Yes
Restrained:	Yes
External	App	Set	UID	Mode:	Server	UID

Click	on	the	Save	button	when	finished.	You	will	get	the	following	error	because	the	configuration	file	doesn't	exist	as	of	now.	Click	on	the	link	to	create	the	configuration	file.

Click	the	Save	button	again	to	finish	creating	the	Virtual	Host.

Once	the	virtual	host	is	created,	go	to	Virtual	Hosts	->	Choose	Virtual	Host(example.com)	->	General	and	modify	the	configuration	as	given.

Document	Root:	$VH_ROOT/html/
Domain	Name:	example.com
Enable	GZIP	Compression:	Yes
Enable	Brotli	Compression:	Yes

Click	the	Save	button	when	finished.	Next,	we	need	to	set	up	index	files.	Click	the	edit	button	against	Index	files	below	the	General	Section.	Set	the	following	options.

Use	Server	Index	Files:	No
Index	files:	index.php,	index.html,	index.htm
Auto	Index:	No

Click	Save	when	done.	Next,	we	need	to	choose	Log	files.	Go	to	the	Log	section,	click	Edit	against	Virtual	Host	Log,	and	fill	in	the	following	values.	Leave	other	settings	unchanged.

Use	Server’s	Log:	Yes
File	Name:	$VH_ROOT/logs/error.log
Log	Level:	ERROR
Rolling	Size	(bytes):	10M
Keep	Days:	30
Compress	Archive:	Not	Set

You	can	choose	the	Log	Level	as	DEBUG	if	you	are	on	a	development	machine.

Click	Save	and	then	click	the	plus	sign	in	the	Access	Log	section	to	add	a	new	entry.	Fill	in	the	following	values.

Log	Control:	Own	Log	File
File	Name:	$VH_ROOT/logs/access.log
Piped	Logger:	Not	Set
Log	Format:	Not	Set
Log	Headers:	Not	Set
Rolling	Size	(bytes):	10M
Keep	Days:	30
Compress	Archive:	Not	Set
Bytes	log:	Not	Set

Click	Save	when	done.	Next,	we	need	to	configure	Access	Control	under	the	Security	section.	Set	the	following	Values.

Allowed	List:	*
Denied	List:	Not	set

Click	Save	when	done.	Next,	we	need	to	set	the	Script	Handler	Definition.	Click	the	plus	(+)	sign	to	add	a	new	definition.	Set	the	following	values.

Suffixes:	php
Handler	Type:	LiteSpeed	SAPI
Handler	Name:	[Server	Level]:	lsphp

Click	Save	when	done.	Next,	we	need	to	set	Rewrite	Control	under	the	Rewrite	section.	Set	the	following	values.

Enable	Rewrite:	Yes
Auto	Load	from	.htaccess:	Yes
Log	Level:	Not	Set

Click	Save	when	done.	And	at	last,	we	need	to	set	the	Listeners.	Go	to	the	Listeners	section	and	click	on	the	View	button	against	Default	Listener.	Then,	click	on	the	Add	button	against
Virtual	Host	Mappings	to	add	a	new	mapping	and	set	the	following	values.

Virtual	Host:	example.com
Domains:	example.com

Click	Save	when	done.	Now,	click	on	the	Graceful	restart	button	to	apply	all	the	changes	above	and	restart	the	server.

Step	9	-	Install	SSL
Setting	up	SSL	in	OpenLiteSpeed	requires	us	to	set	up	two	certificates.	A	self-signed	certificate	for	the	overall	server	and	a	Let's	Encrypt	site-specific	server.

The	administration	panel	already	comes	with	a	self-signed	certificate	pre-installed	which	is	available	in	the	/usr/local/lsws/admin/conf	directory.

Let	us	create	the	Self	Signed	Certificate	for	the	overall	server	first.

$	cd	~
$	openssl	req	-x509	-days	365	-newkey	rsa:4096	-keyout	key.pem	-out	cert.pem	-nodes

You	will	get	a	similar	output.

You	are	about	to	be	asked	to	enter	information	that	will	be	incorporated
into	your	certificate	request.
What	you	are	about	to	enter	is	what	is	called	a	Distinguished	Name	or	a	DN.
There	are	quite	a	few	fields	but	you	can	leave	some	blank
For	some	fields	there	will	be	a	default	value,
If	you	enter	'.',	the	field	will	be	left	blank.

Country	Name	(2	letter	code)	[XX]:
State	or	Province	Name	(full	name)	[]:
Locality	Name	(eg,	city)	[Default	City]:
Organization	Name	(eg,	company)	[Default	Company	Ltd]:
Organizational	Unit	Name	(eg,	section)	[]:
Common	Name	(eg,	your	name	or	your	server's	hostname)	[]:example.com
Email	Address	[]:navjot@example.com

You	can	press	enter	through	all	the	fields	and	leave	them	empty.	Fill	in	your	domain	for	the	Common	name	and	your	email	address.

Create	the	directory	for	the	self-signed	certificates.

$	sudo	mkdir	/usr/local/lsws/certs

Copy	the	certificate	to	the	/usr/local/lsws/certs	directory.

$	sudo	mv	*.pem	/usr/local/lsws/certs

We	need	to	install	Certbot	to	generate	free	SSL	certificates	offered	by	Let's	Encrypt.

You	can	either	install	Certbot	using	Debian's	repository	or	grab	the	latest	version	using	the	Snapd	tool.	We	will	be	using	the	Snapd	version.	Debian	12	comes	doesn't	come	with	Snapd	installed.

Install	Snapd	package.

$	sudo	apt	install	-y	snapd

Run	the	following	commands	to	ensure	that	your	version	of	Snapd	is	up	to	date.

$	sudo	snap	install	core
$	sudo	snap	refresh	core

Issue	the	following	command	to	install	Certbot.

$	sudo	snap	install	--classic	certbot

Use	the	following	command	to	ensure	that	the	Certbot	command	can	be	run	by	creating	a	symbolic	link	to	the	/usr/bin	directory.

$	sudo	ln	-s	/snap/bin/certbot	/usr/bin/certbot

Verify	the	installation.

$	certbot	--version
certbot	2.6.0

Run	the	following	command	to	generate	an	SSL	Certificate.

Obtain	the	SSL	certificate.	The	webroot	directory	is	set	to	the	public	HTML	directory	configured	earlier.

$	sudo	certbot	certonly	--webroot	-w	/usr/local/lsws/example.com/html/	--agree-tos	--no-eff-email	--staple-ocsp	--preferred-challenges	http	-m	name@example.com	-d	example.com

Generate	a	Diffie-Hellman	group	certificate.

$	sudo	openssl	dhparam	-dsaparam	-out	/etc/ssl/certs/dhparam.pem	4096

Check	the	Certbot	renewal	scheduler	service.

$	sudo	systemctl	list-timers

You	will	find	snap.certbot.renew.service	as	one	of	the	services	scheduled	to	run.

NEXT																								LEFT								LAST																								PASSED							UNIT																									ACTIVATES
.....
Sat	2023-09-30	18:12:21	UTC	2h	59min	left		Sat	2023-09-30	14:22:18	UTC	50min	ago			apt-daily.timer												apt-daily.service
Sat	2023-09-30	18:54:00	UTC	3h	41min	left		-																											-											snap.certbot.renew.timer			snap.certbot.renew.service
Sun	2023-10-01	00:00:00	UTC	8h	left								-																											-											dpkg-db-backup.timer							dpkg-db-backup.service

To	check	whether	the	SSL	renewal	is	working	fine,	do	a	dry	run	of	the	process.

$	sudo	certbot	renew	--dry-run

If	you	see	no	errors,	you	are	all	set.	Your	certificate	will	renew	automatically.

Now	open	the	Admin	console,	go	to	Listeners	>>	Add	New	Listener,	and	add	the	following	values.

Listener	Name:	SSL
IP	Address:	ANY	IPv4
Port:	443
Secure:	Yes

Click	Save	when	done.	Next,	go	to	the	Virtual	Host	Mappings	section	under	the	SSL	Listener	by	clicking	on	SSL,	clicking	on	the	Add	button,	and	filling	in	the	following	values.

Virtual	Host:	example.com
Domains:	example.com

Click	Save	when	done.	Next,	go	to	Listeners	>>	SSL	Listener	>>	SSL	Tab	>>SSL	Private	Key	&	Certificate	(Edit	button)	and	fill	in	the	following	values	for	the	self-signed	certificate	we
created	before.

Private	Key	File:	/home/user/key.pem
Certificate	File:	/home/user/cert.pem
Chained	Certificate:	Yes

Click	Save	when	done.	Next,	go	to	Listeners	>>	SSL	Listener	>>	SSL	Tab	>>	SSL	Protocol	(Edit	button)	and	fill	in	the	following	values	for	the	SSL	protocol	and	cipher	details.

Protocol	Version:	TLS	v1.2	TLS	v1.3
Ciphers:	ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:DHE-RSA-CHACHA20-POLY1305
Enable	ECDH	Key	Exchange:	Yes
Enable	DH	Key	Exchange:	Yes
DH	Parameter:	/etc/ssl/certs/dhparam.pem

Click	Save	when	done.	Next,	go	to	Virtual	Hosts	>>	example.com	>>	SSL	Tab	>>	SSL	Private	Key	&	Certificate	(Edit	button)	and	fill	in	the	following	values	with	the	Let's	Encrypt
Certificate.

Private	Key	File:	/etc/letsencrypt/live/example.com/privkey.pem
Certificate	File:	/etc/letsencrypt/live/example.com/fullchain.pem
Chained	Certificate:	Yes

Click	Save	when	done.	Next,	go	to	Virtual	Hosts	>>	example.com	>>	SSL	Tab	>>	OCSP	Stapling	(Edit	button)	and	fill	in	the	following	values	to	enable	OCSP	Stapling.

Enable	OCSP	Stapling:	Yes

OCSP	Response	Max	Age(Secs):	300
OCSP	Responder:	http://r3.o.lencr.org

Click	Save	when	done.	Next,	go	to	Virtual	Hosts	>>	example.com	>>	SSL	Tab	>>	Security	(Edit	button)	and	fill	in	the	following	values	to	enable	HTTP3/QUIC	protocol.

Enable	HTTP3/QUIC:	Yes

We	don't	need	to	enable	other	options	because	they	are	on	by	default.

Click	Save	when	finished.

Restart	the	server	by	clicking	on	the	Graceful	restart	button.

Step	10	-	Test	Site
Create	a	Test	file	in	your	html	directory.

$	sudo	nano	/usr/local/lsws/example.com/html/index.php

Paste	the	following	code	in	the	Nano	editor.

<html>
<head>
				<h2>OpenLiteSpeed	Server	Install	Test</h2>
</head>
		<body>
		<?php	echo	'<p>Hello,</p>';

		//	Define	PHP	variables	for	the	MySQL	connection.
		$servername	=	"localhost";
		$username	=	"testuser";
		$password	=	"Your_Password123";

		//	Create	a	MySQL	connection.
		$conn	=	mysqli_connect($servername,	$username,	$password);

		//	Report	if	the	connection	fails	or	is	successful.
		if	(!$conn)	{

		exit('<p>Your	connection	has	failed.<p>'	.		mysqli_connect_error());
		}
		echo	'<p>You	have	connected	successfully.</p>';

				?>
</body>
</html>

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.	Open	the	URL	https://example.com	in	a	browser	and	you	should	see	the	following	page.

The	test	site	is	fully	functional.	You	can	start	using	the	server	to	serve	dynamic	PHP	websites	and	applications.

Conclusion
This	concludes	our	tutorial	on	installing	LOMP	Stack	(OpenLiteSpeed,	MySQL,	and	PHP)	on	a	Debian	12	server.	If	you	have	any	questions,	post	them	in	the	comments	below.

