
comment-installer-gitea-devops-platform-using-docker-sur-debian-12
Gitea	is	an	open-source	code-hosting	solution	based	on	the	Git	platform.	It	is	written	in	the	Go	language	and	can	be	installed	on	multiple	operating	systems,	including	Linux,	macOS,	Windows,	
and	architectures	like	amd64,	i386,	ARM,	and	others.	It	includes	a	repository	file	editor,	issue	tracking,	pull	requests,	user	management,	notifications,	built-in	wiki,	LFS	Support,	Git	hooks,	and	
much	more.

It	is	a	lightweight	application.	Therefore,	it	can	be	installed	on	low-powered	systems.	If	you	are	looking	for	a	self-hosted	Git	platform	with	a	smaller	memory	platform,	you	should	check	out	
Gitea.

This	article	will	cover	installing	and	configuring	Gitea	on	a	Debian	12	server	and	setting	up	your	first	Git	repository.	Gitea	can	be	installed	from	source,	binary,	a	docker	package,	or	a	package.	
For	our	tutorial,	we	will	install	it	using	Docker.

Prerequisites
A	server	running	Debian	12.

A	non-root	user	with	sudo	privileges.

A	Fully	Qualified	Domain	Name	(FQDN)	like	gitea.example.com	pointing	to	your	server.

Make	sure	your	server	has	swap	storage	enabled	if	you	are	on	a	server	with	1GB	RAM.

Make	sure	everything	is	updated.

$	sudo	apt	update	&&	sudo	apt	upgrade

A	few	essential	packages	are	required	before	we	proceed	ahead.	Some	of	these	will	already	be	installed	on	your	server.

$	sudo	apt	install	curl	wget	nano	software-properties-common	dirmngr	apt-transport-https	ca-certificates	lsb-release	debian-archive-keyring	gnupg2	ufw	unzip	-y

Step	1	-	Configure	Firewall
The	first	step	is	to	configure	the	firewall.	Debian	comes	with	ufw	(Uncomplicated	Firewall)	by	default.

Check	if	the	firewall	is	running.

$	sudo	ufw	status

You	will	get	the	following	output.

Status:	inactive

Allow	SSH	port	so	that	the	firewall	doesn't	break	the	current	connection	upon	enabling	it.

$	sudo	ufw	allow	OpenSSH

Allow	HTTP	and	HTTPS	ports	as	well.

$	sudo	ufw	allow	http
$	sudo	ufw	allow	https

Enable	the	Firewall

$	sudo	ufw	enable
Command	may	disrupt	existing	ssh	connections.	Proceed	with	operation	(y|n)?	y
Firewall	is	active	and	enabled	on	system	startup

Check	the	status	of	the	firewall	again.

$	sudo	ufw	status

You	should	see	a	similar	output.

Status:	active

To		 		Action		 		From
--		 		------		 		----
OpenSSH		 		ALLOW		 		Anywhere
80/tcp		 		ALLOW		 		Anywhere
443		 		ALLOW		 		Anywhere
OpenSSH	(v6)		 		ALLOW		 		Anywhere	(v6)
80/tcp	(v6)		 		ALLOW		 		Anywhere	(v6)
443	(v6)		 		ALLOW		 		Anywhere	(v6)

Step	2	-	Install	Docker	and	Docker	Compose
Debian	12	ships	with	an	older	version	of	Docker.	To	install	the	latest	version,	first,	import	the	Docker	GPG	key.

$	curl	-fsSL	https://download.docker.com/linux/debian/gpg	|	sudo	gpg	--dearmor	-o	/usr/share/keyrings/docker.gpg

Create	a	Docker	repository	file.

$	echo	\
		"deb	[arch="$(dpkg	--print-architecture)"	signed-by=/usr/share/keyrings/docker.gpg]	https://download.docker.com/linux/debian	\
		"$(.	/etc/os-release	&&	echo	"$VERSION_CODENAME")"	stable"	|	\
		sudo	tee	/etc/apt/sources.list.d/docker.list	>	/dev/null

Update	the	system	repository	list.

$	sudo	apt	update

Install	the	latest	version	of	Docker.

$	sudo	apt	install	docker-ce	docker-ce-cli	containerd.io	docker-buildx-plugin	docker-compose-plugin

Verify	that	it	is	running.

$	sudo	systemctl	status	docker
?	docker.service	-	Docker	Application	Container	Engine

		Loaded:	loaded	(/lib/systemd/system/docker.service;	enabled;	preset:	enabled)
				Active:	active	(running)	since	Sat	2023-11-18	07:13:39	UTC;	10s	ago
TriggeredBy:	?	docker.socket

				Docs:	https://docs.docker.com
		Main	PID:	1891	(dockerd)
			Tasks:	8
		Memory:	27.2M
				CPU:	338ms
		CGroup:	/system.slice/docker.service

		??1891	/usr/bin/dockerd	-H	fd://	--containerd=/run/containerd/containerd.sock

By	default,	Docker	requires	root	privileges.	If	you	want	to	avoid	using	sudo	every	time	you	run	the	docker	command,	add	your	username	to	the	docker	group.

$	sudo	usermod	-aG	docker	$(whoami)

You	will	need	to	log	out	of	the	server	and	back	in	as	the	same	user	to	enable	this	change	or	use	the	following	command.

$	su	-	${USER}

Confirm	that	your	user	is	added	to	the	Docker	group.

$	groups
navjot	sudo	users	docker

Step	3	-	Create	a	Git	user
In	order	for	the	users	to	be	able	to	access	the	host	via	SSH,	you	will	need	to	create	a	separate	git	user	on	the	host.	Run	the	following	command	to	create	the	git	user.

$	sudo	adduser	--system	--shell	/bin/bash	--gecos	'Git	Version	Control'	--group	--disabled-password	--home	/home/git	git

Let	us	go	through	all	the	options	and	flags	in	the	above	command	for	a	better	understanding.

--system	-	creates	a	system	user	instead	of	a	regular	user.	System	users	are	for	running	system	services	and	cannot	be	used	for	interactive	logins.
--shell	/bin/bash	-	sets	the	login	shell	for	the	system	user	to	the	Bash	shell.
--gecos	'Git	Version	Control'	-	sets	a	descriptive	field	for	the	user.	It	is	optional	and	can	be	skipped	but	is	useful	if	your	system	has	a	lot	of	users.
--group	-	creates	a	group	with	the	same	name	as	the	user.
--disabled-password	-	disables	password-based	login	for	the	user	which	helps	secure	the	account.
--home	/home/git	-	sets	the	home	directory	for	the	user	to	/home/git	which	stores	the	user's	files	and	configuration.
git	-	specifies	the	username.	Here	we	are	using	git	as	the	username	for	the	account.

You	will	get	the	following	output	once	you	run	the	command.

Adding	system	user	`git'	(UID	105)	...
Adding	new	group	`git'	(GID	111)	...
Adding	new	user	`git'	(UID	105)	with	group	`git'	...
Creating	home	directory	`/home/git'	...

Note	the	values	of	the	variables	UID	and	GID	which	we	will	need	in	the	next	step.	In	our	case,	UID	is	105	and	GID	is	111.

Step	4	-	Configure	and	Install	Gitea
Configure	System	Timezone

You	can	check	your	system's	current	time	zone	by	the	following	command.

$	timedatectl
															Local	time:	Sat	2023-11-18	07:15:53	UTC
											Universal	time:	Sat	2023-11-18	07:15:53	UTC
																	RTC	time:	Sat	2023-11-18	07:15:53
																Time	zone:	Etc/UTC	(UTC,	+0000)
System	clock	synchronized:	yes
														NTP	service:	active
										RTC	in	local	TZ:	no

You	can	see	that	the	system	is	set	to	GMT	or	UTC	timezone.	If	you	live	in	an	area	with	a	different	timezone	or	want	to	change	it,	use	the	following	command	to	do	that.

$	sudo	timedatectl	set-timezone	Asia/Kolkata

Check	the	timezone	again.

$	timedatectl
															Local	time:	Sat	2023-11-18	12:46:29	IST
											Universal	time:	Sat	2023-11-18	07:16:29	UTC
																	RTC	time:	Sat	2023-11-18	07:16:29
																Time	zone:	Asia/Kolkata	(IST,	+0530)
System	clock	synchronized:	yes
														NTP	service:	active
										RTC	in	local	TZ:	no

You	can	see	that	the	timezone	has	been	updated	to	IST,	which	is	GMT+5:30.

Create	Gitea	Directories

Create	the	directory	for	Gitea.

$	mkdir	~/gitea-docker

Switch	to	the	Gitea	directory.

$	cd	~/gitea-docker

Create	directories	for	storing	Gitea	data	and	PostgreSQL	databases.

$	mkdir	{gitea,postgres}

Configure	Gitea	Docker	Compose	File

Create	and	open	the	Docker	Compose	file	for	editing.

$	nano	docker-compose.yml

Paste	the	following	code	in	it.	Paste	the	UID	and	GID	values	generated	earlier.

services:
		server:
				image:	gitea/gitea:1.21.0
				container_name:	gitea
				environment:
						-	USER_UID=105
						-	USER_GID=111
						-	GITEA__database__DB_TYPE=postgres
						-	GITEA__database__HOST=db:5432
						-	GITEA__database__NAME=gitea
						-	GITEA__database__USER=gitea
						-	GITEA__database__PASSWD=gitea
				restart:	always
				networks:
						-	gitea
				volumes:
						-	./gitea:/data
						-	/home/git/.ssh/:/data/git/.ssh
						-	/etc/timezone:/etc/timezone:ro
						-	/etc/localtime:/etc/localtime:ro
				ports:
						-	"3000:3000"
						-	"2221:22"
				depends_on:
						-	db

		db:
				image:	postgres:15
				restart:	always
				environment:
						-	POSTGRES_USER=gitea
						-	POSTGRES_PASSWORD=gitea
						-	POSTGRES_DB=gitea
				networks:
						-	gitea
				volumes:
						-	./postgres:/var/lib/postgresql/data

networks:

		gitea:
				external:	false

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

We	are	using	the	UID	(User	Identifier)	and	GID	(Group	Identifier)	values	for	the	user	we	created	in	the	previous	step.

The	above	Docker	Compose	file	deploys	two	containers	-	one	for	Gitea	and	one	for	PostgreSQL.	We	have	added	a	few	environment	variables	to	configure	the	database	details.	To	connect	the
PostgreSQL	database	to	the	Gitea	container,	we	have	specified	the	host	as	the	name	of	the	PostgreSQL	service	in	the	file.

The	port	parameters	"3000:3000"	and	"2221:22"	specifies	the	port	mapping	where	the	left	port	denotes	the	host	port	and	the	right	port	denotes	the	container	port.	Gitea	uses	port	3000	for	its	web
service,	which	is	what	we	have	exposed	to	the	server	too.	For	SSH,	our	system	is	already	using	port	22	for	logging	purposes.	Therefore,	we	specify	a	custom	port	to	perform	SSH	operations.	In
our	case,	we	are	using	port	2221.	This	port	also	needs	to	be	opened	via	your	firewall,	which	we	already	did	in	step	1	of	this	tutorial.

Both,	Gitea	and	the	PostgreSQL	containers	are	connected	via	a	common	internal	Docker	network	named	gitea.	The	volume	mounts	will	automatically	create	gitea	and	postgres	directories	in	the
current	folder	when	you	start	your	Docker	installation.	The	user	ID	specified	in	the	compose	file	is	what	the	Gitea	container	will	use	to	create	the	gitea	directory.	On	the	other	hand,	the
PostgreSQL	container	will	be	managed	by	the	user	systemd-coredump	which	is	the	default	behavior.	You	can	change	that	behavior,	but	it	is	not	necessary.

Customize	your	Gitea	Installation

You	can	customize	your	Gitea	installation	by	adding	an	app.ini	file	to	the	~/gitea-docker/gitea/gitea/conf	directory.	After	the	installation,	this	file	can	be	edited	from	inside	the	container	from	the
/data/gitea/conf/app.ini	location.	You	can	use	the	sample	ini	file	from	Gitea's	Github	repository	for	reference.

Install	Gitea

Run	the	following	command	to	launch	Gitea	containers.

$	docker	compose	up	-d

Check	the	status	of	the	containers	to	ensure	they	are	running	properly.

$	docker	ps
CONTAINER	ID			IMAGE																COMMAND																		CREATED										STATUS										PORTS																																																																														NAMES
3b5ce50a04fe			gitea/gitea:1.21.0			"/usr/bin/entrypoint…"			43	seconds	ago			Up	42	seconds			0.0.0.0:3000->3000/tcp,	:::3000->3000/tcp,	0.0.0.0:2221->22/tcp,	:::2221->22/tcp			gitea
0908cb9ec3b7			postgres:15										"docker-entrypoint.s…"			43	seconds	ago			Up	42	seconds			5432/tcp																																																																											gitea-docker-db-1

You	can	also	use	the	following	command	to	check	the	status.

$	docker	compose	ps
NAME																IMAGE																COMMAND																																								SERVICE			CREATED														STATUS														PORTS
gitea															gitea/gitea:1.21.0			"/usr/bin/entrypoint	/bin/s6-svscan	/etc/s6"			server				About	a	minute	ago			Up	About	a	minute			0.0.0.0:3000->3000/tcp,	:::3000->3000/tcp,	0.0.0.0:2221->22/tcp,	:::2221->22/tcp
gitea-docker-db-1			postgres:15										"docker-entrypoint.sh	postgres"																db								About	a	minute	ago			Up	About	a	minute			5432/tcp

Step	5	-	Install	Nginx
Debian	12	ships	with	an	older	version	of	Nginx.	To	install	the	latest	version,	you	need	to	download	the	official	Nginx	repository.

Import	Nginx's	signing	key.

$	curl	https://nginx.org/keys/nginx_signing.key	|	gpg	--dearmor	\
				|	sudo	tee	/usr/share/keyrings/nginx-archive-keyring.gpg	>/dev/null

Add	the	repository	for	Nginx's	stable	version.

$	echo	"deb	[signed-by=/usr/share/keyrings/nginx-archive-keyring.gpg]	\
http://nginx.org/packages/debian	`lsb_release	-cs`	nginx"	\
				|	sudo	tee	/etc/apt/sources.list.d/nginx.list

Update	the	system	repositories.

$	sudo	apt	update

Install	Nginx.

$	sudo	apt	install	nginx

Verify	the	installation.	On	Debian	systems,	the	following	command	will	only	work	with	sudo.

$	sudo	nginx	-v
nginx	version:	nginx/1.24.0

Start	the	Nginx	server.

$	sudo	systemctl	start	nginx

Check	the	service	status.

$	sudo	systemctl	status	nginx
?	nginx.service	-	nginx	-	high	performance	web	server
					Loaded:	loaded	(/lib/systemd/system/nginx.service;	enabled;	preset:	enabled)
					Active:	active	(running)	since	Sat	2023-11-18	15:47:20	IST;	1s	ago
							Docs:	https://nginx.org/en/docs/
				Process:	4225	ExecStart=/usr/sbin/nginx	-c	/etc/nginx/nginx.conf	(code=exited,	status=0/SUCCESS)
			Main	PID:	4226	(nginx)
						Tasks:	2	(limit:	2315)
					Memory:	1.8M
								CPU:	7ms
					CGroup:	/system.slice/nginx.service
													??4226	"nginx:	master	process	/usr/sbin/nginx	-c	/etc/nginx/nginx.conf"
													??4227	"nginx:	worker	process"

Open	your	server's	IP	address	in	your	web	browser.	You	should	see	the	following	page	which	means	your	server	is	up	and	running.

Step	6	-	Install	SSL
We	need	to	install	Certbot	to	generate	the	SSL	certificate.	You	can	either	install	Certbot	using	Debian's	repository	or	grab	the	latest	version	using	the	Snapd	tool.	We	will	be	using	the	Snapd
version.

Debian	12	comes	doesn't	come	with	Snapd	installed.	Install	Snapd	package.

$	sudo	apt	install	snapd

Run	the	following	commands	to	ensure	that	your	version	of	Snapd	is	up	to	date.

$	sudo	snap	install	core	&&	sudo	snap	refresh	core

Install	Certbot.

$	sudo	snap	install	--classic	certbot

Use	the	following	command	to	ensure	that	the	Certbot	command	can	be	run	by	creating	a	symbolic	link	to	the	/usr/bin	directory.

$	sudo	ln	-s	/snap/bin/certbot	/usr/bin/certbot

Verify	if	Certbot	is	functioning	correctly.

$	certbot	--version
certbot	2.7.4

Generate	the	SSL	certificate.

$	sudo	certbot	certonly	--nginx	--agree-tos	--no-eff-email	--staple-ocsp	--preferred-challenges	http	-m	name@example.com	-d	gitea.example.com

The	above	command	will	download	a	certificate	to	the	/etc/letsencrypt/live/gitea.example.com	directory	on	your	server.

Generate	a	Diffie-Hellman	group	certificate.

$	sudo	openssl	dhparam	-dsaparam	-out	/etc/ssl/certs/dhparam.pem	4096

Check	the	Certbot	renewal	scheduler	service.

$	sudo	systemctl	list-timers

You	will	find	snap.certbot.renew.service	as	one	of	the	services	scheduled	to	run.

NEXT																								LEFT											LAST																								PASSED						UNIT																						ACTIVATES					

Sat	2023-11-18	18:41:45	IST	2h	49min	left	Sat	2023-11-18	12:22:34	IST	3h	29min	ago	apt-daily.timer											apt-daily.service
Sat	2023-11-18	20:40:00	IST	4h	47min	left	-																											-												snap.certbot.renew.timer		snap.certbot.renew.service
Sun	2023-11-19	00:00:00	IST	8h	left							-																											-												dpkg-db-backup.timer						dpkg-db-backup.service

Do	a	dry	run	of	the	process	to	check	whether	the	SSL	renewal	is	working	fine.

$	sudo	certbot	renew	--dry-run

If	you	see	no	errors,	you	are	all	set.	Your	certificate	will	renew	automatically.

Step	7	-	Configure	Nginx
Run	the	following	command	to	add	a	configuration	file	for	your	site.

$	sudo	nano	/etc/nginx/conf.d/gitea.conf

Paste	the	following	code	in	the	editor.

#	Connection	header	for	WebSocket	reverse	proxy
map	$http_upgrade	$connection_upgrade	{
				default	upgrade;
				""						close;
}

map	$remote_addr	$proxy_forwarded_elem	{

				#	IPv4	addresses	can	be	sent	as-is
				~^[0-9.]+$	"for=$remote_addr";

				#	IPv6	addresses	need	to	be	bracketed	and	quoted
				~^[0-9A-Fa-f:.]+$	"for=\"[$remote_addr]\"";

				#	Unix	domain	socket	names	cannot	be	represented	in	RFC	7239	syntax
				default	"for=unknown";
}

map	$http_forwarded	$proxy_add_forwarded	{

			#	If	the	incoming	Forwarded	header	is	syntactically	valid,	append	to	it
				"~^(,[\\t]*)*([!#$%&'*+.^_`|~0-9A-Za-z-]+=([!#$%&'*+.^_`|~0-9A-Za-z-]+|\"([\\t	\\x21\\x23-\\x5B\\x5D-\\x7E\\x80-\\xFF]|\\\\[\\t	\\x21-\\x7E\\x80-\\xFF])*\"))?(;([!#$%&'*+.^_`|~0-9A-Za-z-]+=([!#$%&'*+.^_`|~0-9A-Za-z-]+|\"([\\t	\\x21\\x23-\\x5B\\x5D-\\x7E\\x80-\\xFF]|\\\\[\\t	\\x21-\\x7E\\x80-\\xFF])*\"))?)*([\\t]*,([\\t]*([!#$%&'*+.^_`|~0-9A-Za-z-]+=([!#$%&'*+.^_`|~0-9A-Za-z-]+|\"([\\t	\\x21\\x23-\\x5B\\x5D-\\x7E\\x80-\\xFF]|\\\\[\\t	\\x21-\\x7E\\x80-\\xFF])*\"))?(;([!#$%&'*+.^_`|~0-9A-Za-z-]+=([!#$%&'*+.^_`|~0-9A-Za-z-]+|\"([\\t	\\x21\\x23-\\x5B\\x5D-\\x7E\\x80-\\xFF]|\\\\[\\t	\\x21-\\x7E\\x80-\\xFF])*\"))?)*)?)*$"	"$http_forwarded,	$proxy_forwarded_elem";

				#	Otherwise,	replace	it
				default	"$proxy_forwarded_elem";
}

#	Redirect	all	non-encrypted	to	encrypted
server	{
				listen	80;
				listen	[::]:80;
				server_name	gitea.example.com;
				return	301	https://$host$request_uri;
}

server	{
				listen	443	ssl	http2;
				listen	[::]:443	ssl	http2;

				server_name	gitea.example.com;

				ssl_certificate					/etc/letsencrypt/live/gitea.example.com/fullchain.pem;
				ssl_certificate_key	/etc/letsencrypt/live/gitea.example.com/privkey.pem;
				ssl_trusted_certificate	/etc/letsencrypt/live/gitea.example.com/chain.pem;
				ssl_session_timeout	1d;
				ssl_session_cache	shared:MozSSL:10m;
				ssl_session_tickets	off;
				ssl_stapling	on;
				ssl_stapling_verify	on;
				ssl_dhparam	/etc/ssl/certs/dhparam.pem;
				resolver	1.1.1.1	1.0.0.1	[2606:4700:4700::1111]	[2606:4700:4700::1001]	8.8.8.8	8.8.4.4	[2001:4860:4860::8888]	[2001:4860:4860::8844]	valid=60s;
				resolver_timeout	2s;

				ssl_protocols	TLSv1.2	TLSv1.3;
				ssl_ciphers	ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384;

				access_log	/var/log/nginx/gitea.access.log	main;
				error_log		/var/log/nginx/gitea.error.log;

				tcp_nopush	on;

				#	security	headers
				add_header	X-XSS-Protection	"1;	mode=block"	always;
				add_header	X-Content-Type-Options	"nosniff"	always;
				add_header	Referrer-Policy	"no-referrer-when-downgrade"	always;
				add_header	Content-Security-Policy	"default-src	'self'	http:	https:	ws:	wss:	data:	blob:	'unsafe-inline';	frame-ancestors	'self';"	always;
				add_header	Permissions-Policy	"interest-cohort=()"	always;

				#	.	files
				location	~	/\.(?!well-known)	{
								deny	all;
				}

				location	/	{
								client_max_body_size	100M;
								proxy_pass		http://localhost:3000;
								proxy_http_version	1.1;
								proxy_cache_bypass	$http_upgrade;
								proxy_set_header	Upgrade	$http_upgrade;
								proxy_set_header	Connection	$connection_upgrade;
								proxy_set_header	Host	$host;
								proxy_set_header	X-Real-IP	$remote_addr;
								proxy_set_header	X-Forwarded-For	$proxy_add_x_forwarded_for;
								proxy_set_header	X-Forwarded-Proto	$scheme;
								proxy_set_header	X-Forwarded-Port	$server_port;
								proxy_set_header	Forwarded	$proxy_add_forwarded;
								proxy_connect_timeout	60s;
								proxy_send_timeout	60s;

								proxy_read_timeout	60s;
				}
}

Once	finished,	press	Ctrl	+	X	to	close	the	editor	and	press	Y	when	prompted	to	save	the	file.

Open	the	file	/etc/nginx/nginx.conf	for	editing.

$	sudo	nano	/etc/nginx/nginx.conf

Add	the	following	line	before	the	line	include	/etc/nginx/conf.d/*.conf;.

server_names_hash_bucket_size	64;

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.	Test	the	Nginx	configuration.

$	sudo	nginx	-t

You	should	see	the	following	output	indicating	your	configuration	is	correct.

nginx:	the	configuration	file	/etc/nginx/nginx.conf	syntax	is	ok
nginx:	configuration	file	/etc/nginx/nginx.conf	test	is	successful

Reload	the	Nginx	service.

$	sudo	systemctl	reload	nginx

Step	8	-	Access	and	Set	up	Gitea
Visit	the	URL	https://gitea.example.com	in	your	browser,	and	the	following	installation	screen	shall	appear.

Most	of	the	fields	will	be	pre-filled	for	you	based	on	the	values	from	the	Docker	compose	file.

Enter	gitea.example.com	as	the	Server	Domain	and	https://gitea.example.com	as	the	Gitea	Base	URL.	Change	the	value	for	the	SSH	Server	Port	from	22	to	2221.	Leave	the	remaining	settings	as	it
is.

If	you	want	to	use	mail	features,	you	can	add	your	SMTP	server	details.	Expand	the	Email	Settings	section	of	the	page	and	enter	values	as	shown	in	the	screenshot.	Make	sure	to	include	your
SMTP	port	with	the	hostname	as	shown.	For	our	tutorial,	we	are	using	the	Amazon	SES	service.	You	can	use	any	SMTP	service	of	your	choice.

There	are	a	few	more	settings	you	should	check	out	before	installing.	To	change	them,	expand	the	Server	and	Third-Party	Service	Settings	section	of	the	page.

Change	the	settings	as	per	your	requirement.	We	have	enabled	the	option	Hide	Email	Addresses	by	Default	to	ensure	greater	privacy	and	Require	Sign-in	to	View	Pages	to	keep	our	Git
site	private.	If	you	don't	want	people	to	register	an	account,	enable	the	Disable	Self-Registration	option.

Last	but	not	least,	set	up	your	administrator	account.	Expand	the	Administrator	Account	Settings	section	of	the	page	and	fill	in	the	required	values.

Click	the	Install	Gitea	button	when	finished	to	complete	the	installation.	You	will	be	redirected	to	the	Gitea	dashboard.	If,	for	some	reason,	you	get	a	502	error,	refresh	the	page.

Step	8	-	Create	First	Repository
Let	us	create	our	first	repository.	To	do	that,	click	the	+	sign	on	the	dashboard.

Enter	the	repository	details.	Select	the	Default	Issue	label	by	choosing	from	the	dropdown	menu.	Select	an	appropriate	license	for	your	repository.

Select	the	default	branch	for	your	repository.

Once	satisfied,	click	the	Create	repository	button	to	create	your	first	repository	on	your	Gitea	installation.	You	will	be	redirected	to	your	repository	home.

Step	9	-	Set	up	SSH
Let	us	set	up	SSH	to	use	with	our	newly	created	repository.

For	our	tutorial,	we	will	use	a	local	PC	with	Ubuntu	pre-installed.	However,	the	commands	should	work	on	any	OS	terminal	without	much	change.

Create	a	new	SSH	key	to	use	with	Gitea	on	your	local	PC.

$	ssh-keygen	-f	~/.ssh/gitea-demo	-t	rsa	-b	4096	-C	"HowtoForge	Gitea	Demo"	-q	-N	"yourpassphrase"

Enter	a	strong	passphrase	in	place	of	the	placeholder	in	the	command	above.	This	will	create	an	SSH	key	at	~/.ssh/gitea-demo	location.

Next,	open	your	Gitea	profile	settings	as	shown	by	clicking	the	dropdown	menu	on	your	profile	image	and	selecting	the	Settings	option.

Next,	switch	to	the	SSH/GPG	Keys	tab	on	the	page.

Add	a	name	for	your	SSH	key.	Go	back	to	the	terminal	on	your	local	PC	and	run	the	following	command	to	output	the	public	key	for	Gitea.

$	cat	~/.ssh/gitea-demo.pub

Copy	the	resulting	output	and	paste	it	back	into	the	Content	box	on	the	SSH	keys	page	of	Gitea.

Click	the	Add	Key	button	to	finish	adding	the	key.

Go	back	to	your	local	PC	and	set	up	the	SSH	agent	to	remain	active	for	1	hour.

$	eval	$(ssh-agent	-t	3600)

Add	the	newly	created	SSH	key	to	the	SSH	agent.

$	ssh-add	~/.ssh/gitea-demo
Enter	passphrase	for	/home/navjot/.ssh/gitea-demo:
Identity	added:	/home/navjot/.ssh/gitea-demo	(HowtoForge	Gitea	Demo)

You	will	be	prompted	for	your	passphrase.

Step	10	-	Clone	Repository	using	SSH
Let	us	clone	the	newly	created	repository	using	SSH.	Visit	the	repository	page	again	and	copy	the	SSH	URL	after	selecting	the	SSH	option.

It	should	look	like	the	following.

ssh://git@gitea.example.com:2221/navjot/howtoforge.git

Run	the	following	command	on	your	local	PC	to	clone	the	repository	using	SSH.

$	git	clone	ssh://git@gitea.example.com:2221/navjot/howtoforge.git
Cloning	into	'howtoforge'...
The	authenticity	of	host	'[gitea.example.com]:2221	([128.199.48.13]:2221)'	can't	be	established.
ED25519	key	fingerprint	is	SHA256:H7t5hNmEpZkYC9u3sXbA1mnGXCnoqaUZGL+gpAG9uNs.
This	key	is	not	known	by	any	other	names
Are	you	sure	you	want	to	continue	connecting	(yes/no/[fingerprint])?	yes
Warning:	Permanently	added	'[gitea.example.com]:2221'	(ED25519)	to	the	list	of	known	hosts.
remote:	Enumerating	objects:	4,	done.
remote:	Counting	objects:	100%	(4/4),	done.
remote:	Compressing	objects:	100%	(4/4),	done.
remote:	Total	4	(delta	0),	reused	0	(delta	0),	pack-reused	0
Receiving	objects:	100%	(4/4),	done.

You	will	be	prompted	to	add	the	host	credentials.	Enter	yes	to	proceed	with	cloning	the	repository.

You	will	see	the	cloned	repository	on	your	system.

$	ls
howtoforge

Switch	to	the	directory.

$	cd	howtoforge

Check	the	Git	status	of	the	newly	cloned	repository.	For	this,	you	should	have	Git	installed	on	your	local	PC.

$	git	status
On	branch	main
Your	branch	is	up	to	date	with	'origin/main'.

nothing	to	commit,	working	tree	clean

This	concludes	that	SSH	is	working	perfectly.

Step	11	-	Testing	First	Commit
Now	that	we	have	set	up	our	first	repository,	it's	time	to	make	some	changes	and	commit	them	back.

Let	us	update	the	README.md	file.	On	your	local	PC,	open	the	readme	file	for	editing.

$	nano	README.md

Edit	the	file	and	when	finished,	save	it	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Check	the	Git	status	again.

$	git	status
On	branch	main
Your	branch	is	up	to	date	with	'origin/main'.

Changes	not	staged	for	commit:
		(use	"git	add	<file>..."	to	update	what	will	be	committed)
		(use	"git	restore	<file>..."	to	discard	changes	in	working	directory)
								modified:			README.md

no	changes	added	to	commit	(use	"git	add"	and/or	"git	commit	-a")

This	shows	that	the	Readme	file	has	been	edited	but	not	committed.	Add	the	file	to	prepare	it	for	commit.

$	git	add	README.md

Commit	the	file.

$	git	commit	-m	"Update	the	Readme	file	for	Gitea	tutorial."
[main	bb2956f]	Update	the	Readme	file	for	Gitea	tutorial.
	1	file	changed,	3	insertions(+),	1	deletion(-)

Push	the	file	to	your	Gitea	Server.

$	git	push	origin	main
Enumerating	objects:	5,	done.
Counting	objects:	100%	(5/5),	done.
Delta	compression	using	up	to	4	threads
Compressing	objects:	100%	(3/3),	done.
Writing	objects:	100%	(3/3),	378	bytes	|	378.00	KiB/s,	done.
Total	3	(delta	0),	reused	0	(delta	0),	pack-reused	0
remote:	.	Processing	1	references
remote:	Processed	1	references	in	total
To	ssh://gitea.example.com:2221/navjot/howtoforge.git
			bd1248f..bb2956f		main	->	main

To	confirm,	go	back	to	the	Gitea	repository	page.

You	can	notice	that	the	Readme	file	has	been	updated,	and	the	latest	commit	message	is	also	shown.	To	view	the	changes,	click	on	the	commit	message,	and	you	can	view	the	following	page
with	differences.

This	concludes	our	first	commit	for	our	repository.	You	can	start	working	on	your	Gitea	installation	for	your	projects.

Step	12	-	Backup	and	Restore	Gitea
Gitea	ships	with	a	command	line	tool	that	can	perform	backup	using	a	single	command.	To	run	the	command	line	tool	inside	the	docker	container	to	perform	the	backup,	run	the	following
command.

$	docker	exec	-u	git	-it	-w	/app/gitea	gitea	bash	-c	'/usr/local/bin/gitea	dump	-c	/data/gitea/conf/app.ini'

We	are	running	the	command	as	the	same	user	as	we	created	in	step	3	and	configured	during	the	installation	by	using	the	flag	-u	git	in	the	above	command.	The	flag	-w	/app/gitea	defines	the
folder	inside	the	docker	container	where	the	backup	file	will	be	stored.	The	backup	folder	has	to	be	chosen	such	that	the	git	user	has	permission	to	write	on	it.	Inside	the	docker	container,	there
are	only	two	such	folders.	One	is	the	/data	folder	and	the	other	one	is	the	/app/gitea	folder.	We	can't	use	the	/data	folder	because	the	command	line	tool	backs	the	entire	data	folder	which	goes
into	an	indefinite	loop	if	we	use	it	as	the	destination	which	can	fill	your	server	space.	Therefore,	we	can	only	store	the	backup	in	the	/app/gitea	folder.

The	next	thing	in	the	command	is	the	container	name,	gitea.	After	that,	we	specify	the	type	of	Linux	shell	that	is	used	to	execute	the	command	inside	the	container.	The	flag	-c	specifies	the
command	you	need	to	run	inside	the	container.	And	the	command	to	be	run	is	/usr/local/bin/gitea	dump	-c	/data/gitea/conf/app.ini	which	runs	the	command	line	tool	and	specifies	the	location	of	the
configuration	file	to	go	with	it.

Once	the	command	is	run,	you	will	see	the	following	output.

2023/11/20	06:21:41	...les/setting/cache.go:75:loadCacheFrom()	[I]	Cache	Service	Enabled
2023/11/20	06:21:41	...les/setting/cache.go:90:loadCacheFrom()	[I]	Last	Commit	Cache	Service	Enabled
2023/11/20	06:21:41	...s/setting/session.go:74:loadSessionFrom()	[I]	Session	Service	Enabled
2023/11/20	06:21:41	...es/setting/mailer.go:237:loadMailerFrom()	[I]	Mail	Service	Enabled

2023/11/20	06:21:41	...es/setting/mailer.go:259:loadNotifyMailFrom()	[I]	Notify	Mail	Service	Enabled
2023/11/20 06:21:41 ...s/storage/storage.go:176:initAttachments() [I] Initialising Attachment storage	with	type:	local
2023/11/20 06:21:41 ...les/storage/local.go:33:NewLocalStorage() [I] Creating new Local Storage at /data/gitea/attachments
2023/11/20 06:21:41 ...s/storage/storage.go:166:initAvatars() [I] Initialising Avatar storage with type: local
2023/11/20 06:21:41 ...les/storage/local.go:33:NewLocalStorage() [I] Creating new Local Storage at /data/gitea/avatars
2023/11/20 06:21:41 ...s/storage/storage.go:192:initRepoAvatars() [I] Initialising Repository Avatar storage with type:	local
2023/11/20 06:21:41 ...les/storage/local.go:33:NewLocalStorage() [I] Creating new Local Storage at /data/gitea/repo-avatars
2023/11/20 06:21:41 ...s/storage/storage.go:186:initLFS() [I] Initialising LFS storage with type: local
2023/11/20 06:21:41 ...les/storage/local.go:33:NewLocalStorage() [I] Creating new Local Storage at /data/git/lfs
2023/11/20 06:21:41 ...s/storage/storage.go:198:initRepoArchives() [I] Initialising Repository Archive storage with	type:	local
2023/11/20 06:21:41 ...les/storage/local.go:33:NewLocalStorage() [I] Creating new Local Storage at /data/gitea/repo-archive
2023/11/20 06:21:41 ...s/storage/storage.go:208:initPackages() [I] Initialising Packages storage with type: local
2023/11/20 06:21:41 ...les/storage/local.go:33:NewLocalStorage() [I] Creating new Local Storage at /data/gitea/packages
2023/11/20 06:21:41 ...s/storage/storage.go:219:initActions() [I] Initialising Actions storage with type: local
2023/11/20 06:21:41 ...les/storage/local.go:33:NewLocalStorage() [I] Creating new Local Storage at /data/gitea/actions_log
2023/11/20 06:21:41 ...s/storage/storage.go:223:initActions() [I] Initialising ActionsArtifacts storage with type: local
2023/11/20 06:21:41 ...les/storage/local.go:33:NewLocalStorage() [I] Creating new Local Storage at /data/gitea/actions_artifacts
2023/11/20 06:21:41 cmd/dump.go:265:runDump() [I] Dumping local repositories... /data/git/repositories
2023/11/20 06:21:41 cmd/dump.go:306:runDump() [I] Dumping database...
2023/11/20 06:21:41 cmd/dump.go:318:runDump() [I] Adding custom configuration	file	from	/data/gitea/conf/app.ini
2023/11/20 06:21:41 cmd/dump.go:334:runDump() [I] Custom dir /data/gitea is inside data dir /data/gitea, skipped
2023/11/20 06:21:41 cmd/dump.go:346:runDump() [I] Packing data directory.../data/gitea
2023/11/20 06:21:41 cmd/dump.go:430:runDump() [I] Finish dumping in file gitea-dump-1700441501.zip

Now,	let's	go	through	the	restoration	process.	You	should	have	a	fresh	new	Docker	installation	of	Gitea	running.	But	don't	go	through	the	install	process.

Log	in	to	the	Docker	shell.

$	docker	exec	--user	git	-it	gitea	bash

Switch	to	the	app/gitea	directory.

$	cd	app/gitea

Unzip	the	backup	file.

$	unzip	gitea-dump-1700441501.zip

Switch	to	the	extracted	directory.

$	cd	gitea-dump-1700441501

Restore	the	/data/gitea	folder.

$	mv	data/*	/data/gitea

Restore	the	repositories.

$	mv	repos/*	/data/git/gitea-repositories/

Correct	the	file	permissions.

$	chown	-R	git:git	/data

Regenerate	the	Git	Hooks.

$	/usr/local/bin/gitea	-c	'/data/gitea/conf/app.ini'	admin	regenerate	hooks

Exit	the	docker	shell.

$	exit

Step	13	-	Upgrade	Gitea
Upgrading	Gitea	is	a	simple	process.

Shut	down	and	remove	the	existing	containers.	Since	the	data	is	saved	outside	the	containers	on	the	host,	it	will	be	retained.

$	cd	~/gitea-docker
$ docker compose down	--remove-orphans

Open	the	docker-compose.yml	file	and	change	the	version	of	the	Gitea	container.	Next,	pull	the	new	Gitea	image.

$	docker	pull

Start	the	new	containers.

$	docker	compose	up	-d

Check	the	status.

$	docker	ps

Conclusion
This	concludes	our	tutorial	where	we	installed	Gitea	Code	Hosting	Service	using	Docker	on	a	Debian	12	server.	We	also	installed	the	Nginx	server	to	act	as	a	proxy	and	exposed	Gitea	via	a
public	URL	using	SSL.	If	you	have	any	questions,	post	them	in	the	comments	below.

